Simple High school Series & Limits

Calculus Level 4

a n = k = 1 n k 2 k \large a_{n}=\sum_{k=1}^{n}\frac{k}{2^k} Suppose we define the sequence a n a_n as above with natural number (n), find the value of

lim n 2 n ( 6 3 a n ) n 2 + 5 n + 1 \lim_{n\rightarrow \infty }\frac{2^n(6-3a_{n})}{\sqrt{n^2+5n+1}}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

a n = 1 2 1 + 2 2 2 + 3 2 3 + + n 2 n a_n = \dfrac{1}{2^1} + \dfrac{2}{2^2} + \dfrac{3}{2^3} + \ldots + \dfrac{n}{2^n}

1 2 a n = 0 + 1 2 2 + 2 2 3 + + n 1 2 n + n 2 n + 1 \dfrac{1}{2} a_n = 0 + \dfrac{1}{2^2} + \dfrac{2}{2^3} + \ldots + \dfrac{n-1}{2^n} + \dfrac{n}{2^{n+1}}

Subtracting the two equations above, gives us:

1 2 a n = 1 2 + 1 4 + 1 8 + + 1 2 n n 2 n + 1 \Rightarrow \dfrac{1}{2}a_n = \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \ldots + \dfrac{1}{2^n} - \dfrac{n}{2^{n+1}}

1 2 a n = 1 2 ( 1 1 2 n ) 1 2 n 2 n + 1 \Rightarrow \dfrac{1}{2}a_n = \dfrac{\frac{1}{2}\left(1-\frac{1}{2^n}\right)}{\frac{1}{2}} - \dfrac{n}{2^{n+1}}

1 2 a n = 1 1 2 n n 2 n + 1 \Rightarrow \dfrac{1}{2} a_n = 1 - \dfrac{1}{2^n} - \dfrac{n}{2^{n+1}}

3 a n = 6 6 2 n 3 n 2 n \Rightarrow 3a_n = 6 - \dfrac{6}{2^n} - \dfrac{3n}{2^n}

2 n ( 6 3 a n ) = 6 + 3 n \Rightarrow 2^n(6-3a_n) = 6 + 3n

lim n 2 n ( 6 3 a n ) n 2 + 5 n + 1 = lim n 6 + 3 n n 2 + 5 n + 1 = 3 \displaystyle \lim_{n\to \infty} \dfrac{2^n(6-3a_n)}{\sqrt{n^2 + 5n + 1}} = \lim_{n \to \infty} \dfrac{6+3n}{\sqrt{n^2 + 5n + 1}} = \boxed{3}

Heads of you… I have tried a lot but not getting the answer but you have done some nice job…

Himanshu Agrawal - 5 years, 10 months ago

I love the way you converted the series into required form. Awesome .

Anurag Pandey - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...