A calculus problem by Kishore S. Shenoy

Calculus Level 5

0 100 0 π / 2 ln ( 1 + x sin 2 θ ) sin 2 θ d θ d x \int_0^{100}\int_0^{\pi/2} \dfrac{\ln\left(1+x\sin^2\theta\right)}{\sin^2\theta}\, d\theta\, dx

If the above integral can be written as A π B ( C C D ) \dfrac {A\pi} B\left(C\sqrt C-D\right) , where A A , B B , C C and D D are natural numbers with least values, find A + B + C + D A+B+C+D


The answer is 257.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kishore S. Shenoy
Aug 13, 2016

Relevant wiki: Integration Tricks

Take I ( x ) = 0 π / 2 ln ( 1 + x sin 2 θ ) sin 2 θ d θ I(x) = \int_0^{\pi/2} \dfrac{\ln\left(1+x\sin^2\theta\right)}{\sin^2\theta}\, d\theta

Differentiating w.r.t x x , I ( x ) = 0 π / 2 1 ( 1 + x sin 2 θ ) d θ Dividing top and bottom by cos 2 θ = 0 π / 2 sec 2 θ sec 2 θ + x tan 2 θ d θ t = tan θ d t = sec 2 θ d θ = 0 1 1 + t 2 + x t 2 d t = 1 1 + x [ tan 1 ( t x + 1 ) ] t = 0 t = 1 1 + x π 2 \begin{aligned}I'(x) &= \int_0^{\pi/2} \dfrac1{\left(1+x\sin^2\theta\right)}\, d\theta &\color{#3D99F6}{\text{Dividing top and bottom by } \cos^2\theta}\\ &=\int_0^{\pi/2} \dfrac{\sec^2\theta}{\sec^2\theta+x\tan^2\theta}\, d\theta &\color{#3D99F6}{t =\tan\theta\Rightarrow dt = \sec^2\theta\, d\theta}\\ &=\int_0^\infty \dfrac1{1+t^2 + xt^2}\,dt\\ &=\dfrac1{\sqrt{1+x}}\left[\tan^{-1} \left(t\sqrt{x+1}\right)\right]_{t=0}^{t\to\infty}\\ &= \dfrac1{\sqrt{1+x}}\dfrac\pi2\end{aligned}

Since I ( 0 ) = 0 I(0) = 0 , I ( x ) = 0 x I ( x ) d x = π 0 x 1 2 1 + x d x = π ( 1 + x 1 ) \begin{aligned}I(x) &= \int_0^x I'(x)\, dx\\&=\pi\int_0^x\dfrac1{2\sqrt{1+x}}\, dx \\&=\pi\left(\sqrt{1+x} - 1\right)\end{aligned}

So, we have I ( x ) = π ( 1 + x 1 ) I(x) = \pi\left(\sqrt{1+x} - 1\right)

Integrating, 0 100 I ( x ) d x = π 0 100 ( 1 + x 1 ) d x = 2 π 3 ( 101 101 151 ) \int_0^{100}I(x)\, dx = \pi\int_0^{100} \left(\sqrt{1+x} - 1\right)\, dx = \boxed{\dfrac{2\pi}3\left(101\sqrt{101} - 151\right)}

So, A + B + C + D = 2 + 3 + 101 + 151 = 257 A+B+C+D = 2+3+101+151 = 257

wow, very nice and quick!... I think it can be solved with complex analysis too... I'll think about it...

Guillermo Templado - 4 years, 10 months ago

Log in to reply

Thanks! Just post a solution if you get. I am just keen.

Kishore S. Shenoy - 4 years, 10 months ago

Yes may be with Contour Integration.

Spandan Senapati - 4 years, 1 month ago

I = 0 π 2 ln ( 1 + x sin 2 θ ) sin 2 θ d θ = I = \int_{0}^{\frac{\pi}{2}} \frac{\ln\left(1 + x\sin^2\theta \right)}{\sin^2 \theta} d\theta = Integrating by parts = [ ln ( ( 1 + x sin 2 θ ) tan θ ] 0 π / 2 + 0 π / 2 2 x cos 2 θ 1 + x sin 2 θ d θ = \left[- \frac{\ln(\left(1 + x\sin^2\theta \right)}{\tan \theta}\right]_0^{\pi/2} + \int_0^{\pi/2} \frac{2x\cos^2\theta}{1 + x\sin^2\theta} d\theta lim θ π / 2 ln ( ( 1 + x sin 2 θ ) tan θ = 0 , remember x [ 0 , 100 ] \displaystyle \color{#D61F06}{ \lim_{\theta\to \pi/2} - \frac{\ln(\left(1 + x\sin^2\theta \right)}{\tan \theta} = 0} \text{, remember x } \in [0,100]

lim θ 0 ln ( 1 + x sin 2 θ ) tan θ = 0 0 = lim θ 0 2 x sin θ cos θ 1 + x sin 2 θ 1 + tan 2 θ = lim θ 0 2 x sin θ cos 3 θ 1 + x sin 2 θ = 0 \displaystyle \color{#D61F06}{ \lim_{\theta\to 0} \frac{\ln\left(1 + x\sin^2\theta \right)}{\tan \theta} = \frac{0}{0} = \displaystyle \lim_{\theta\to 0} \frac{\frac{2x\sin\theta \cos\theta}{1 + x\sin^2\theta}}{1 + \tan^2\theta} = \lim_{\theta\to 0} \frac{2x\sin\theta \cos^3\theta}{1 + x\sin^2\theta} = 0} .

Therefore, I = 0 π / 2 2 x cos 2 θ 1 + x sin 2 θ d θ = 0 π / 2 2 x 1 cos 2 θ + x tan 2 θ d θ = 0 π / 2 2 x 1 + ( x + 1 ) tan 2 θ d θ I = \int_0^{\pi/2} \frac{2x\cos^2\theta}{1 + x\sin^2\theta} d\theta = \int_0^{\pi/2} \frac{2x}{\frac{1}{\cos^2\theta} + x\tan^2\theta} d\theta = \int_0^{\pi/2} \frac{2x}{1 + (x + 1)\tan^2\theta} d\theta Now, we make the variable change t = tan θ d t = ( 1 + tan 2 θ ) d θ t = \tan\theta \Rightarrow dt = (1 + \tan^2\theta) d\theta \Rightarrow I = 0 2 x 1 + ( x + 1 ) t 2 1 1 + t 2 d t = 0 2 x + 2 1 + ( x + 1 ) t 2 2 1 + t 2 d t = I = \int_0^{\infty} \frac{2x}{1 + (x + 1)t^2}\cdot \frac{1}{1 + t^2} dt = \int _0^{\infty} \frac{2x + 2}{1 + (x + 1)t^2} - \frac{2}{1 + t^2} dt = [ 2 x + 1 arctan ( t x + 1 ) 2 arctan t ] 0 = π ( x + 1 1 ) \left[2\sqrt{x + 1}\text{ arctan }(t\cdot \sqrt{x +1}) - 2\text{ arctan t}\right]_0^{\infty} = \pi \cdot(\sqrt{x + 1} - 1)

Hence, 0 100 0 π / 2 ln ( 1 + x sin 2 θ ) sin 2 θ d θ d x = 0 100 π ( x + 1 1 ) d x = π 2 3 ( 101 101 151 ) . . . \int_0^{100} \int_0^{\pi/2} \frac{\ln\left( 1 + x \sin^2\theta\right)}{\sin^2\theta} d\theta \space dx = \int_0^{100} \pi(\sqrt{x +1} -1) dx = \pi\frac{2}{3}\left(101\sqrt{101} - 151\right)...

No. Not parts! Feynman's Trick makes it very simple.

Kishore S. Shenoy - 4 years, 10 months ago

Log in to reply

That's good although Feynman's trick does make it simple and short but I liked this solution more.Not every time would standard methods help sometimes intuition helps even more.

Spandan Senapati - 4 years, 1 month ago

Calculator Wolfram Alpha (BETA)
A=2, B=3, C=101, D=151.
A+B+C+D=257.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...