Simple Integral

Calculus Level 4

If F ( x ) = d x x x 6 1 F(x) = \displaystyle \int{\frac{dx}{x\sqrt{x^6-1}}} and F ( 1 ) = 0 F(1)=0 ,

then determine the value of n 3 |n^3| for which F ( n ) = π 9 F(n) = \dfrac{\pi}{9} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jan 10, 2017

3 F ( x ) = 3 x 2 d x x 3 t x 6 1 = d t t sec y t 2 1 = sec y tan y d y sec y sec 2 y 1 = y + C = sec 1 x 3 + C \begin{aligned}3F(x)= \int\dfrac{3x^2\mathrm dx}{\underbrace{x^3}_{\color{#D61F06}t}\sqrt{x^6-1}}=&\int\dfrac{\mathrm{d}t}{\underbrace{t}_{\color{#D61F06}\sec y}\sqrt{t^2-1}}\\=&\int\dfrac{\cancel{\sec y\tan y}\mathrm{d}y}{\cancel{\sec y\sqrt{\sec^2 y-1}}}\\=& y+C\\=&\sec^{-1} x^3+C\end{aligned}

F ( x ) = sec 1 x 3 3 , F ( 1 ) = 0 \boxed{\implies F(x)=\dfrac{\sec^{-1} x^3}{3}}~~,F(1)=0

F ( n ) = sec 1 n 3 3 = π 9 F(n)=\dfrac{\sec^{-1} n^3}{3}=\dfrac{\pi}{9} n 3 = sec π 3 = 2 \implies n^3=\sec \dfrac{\pi}{3}=\boxed{\color{#20A900}2}

I'm sorry, I mistyped it. I've corrected it now. Thanks for your input! :)

Jeffrey Robles - 4 years, 5 months ago

Log in to reply

No problem.. :-)

Rishabh Jain - 4 years, 5 months ago

Log in to reply

Solved it the same way (with x^3 = sec(u)), "Cool Man"!

tom engelsman - 4 years, 4 months ago

F ( x ) = x 5 d x x 6 x 6 1 F(x) = \displaystyle{\int \dfrac{x^5 dx}{x^6 \sqrt{x^6 - 1}}}

Now, let u = x 6 d u = 6 x 5 u = x^6 \rightarrow du = 6x^5 . We have x 5 d x x 6 x 6 1 = 1 6 d u u u 1 \displaystyle{\int \dfrac{x^5 dx}{x^6 \sqrt{x^6 - 1}} = \dfrac{1}{6}\int \dfrac{du}{u\sqrt{u-1}}}

Letting z = u 1 u = z 2 + 1 d u = 2 z d z z = \sqrt{u-1} \rightarrow u = z^2 + 1 \rightarrow du = 2zdz

x 5 d x x 6 x 6 1 = 1 6 d u u u 1 = 1 6 2 z d z ( z 2 + 1 ) z = 1 3 d z z 2 + 1 = 1 3 tan 1 z + C = 1 3 tan 1 x 6 1 + C \begin{aligned} \int \dfrac{x^5 dx}{x^6 \sqrt{x^6 - 1}} &=& \dfrac{1}{6}\int \dfrac{du}{u\sqrt{u-1}}\\ &=& \dfrac{1}{6}\int \dfrac{2z \, dz}{(z^2 + 1)z}\\ &=& \dfrac{1}{3} \int \dfrac{dz}{z^2 + 1}\\ &=& \dfrac{1}{3} \tan^{-1} z + C\\ &=& \dfrac{1}{3} \tan^{-1} \sqrt{x^6 - 1} + C \end{aligned}

Now, F ( 1 ) = 0 F(1) = 0 gives C = 0 C = 0 meaning F ( x ) = 1 3 tan 1 x 6 1 F(x) = \dfrac{1}{3} \tan^{-1} \sqrt{x^6 - 1} .

If we troubleshoot the problem, I think it should've been asked "Determine the value of n 3 |n^3| for which F ( n ) = π 9 F(n) = \dfrac{\pi}{9} ". If that was the problem, then

1 3 tan 1 n 6 1 = π 9 n 6 1 = 3 n 3 = 2 \begin{aligned} \dfrac{1}{3} \tan^{-1} \sqrt{n^6 - 1} &=& \dfrac{\pi}{9}\\ n^6 - 1 &=& 3\\ |n^3| &=& \boxed{2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...