∫ 0 1 arcsin ( x ) arccos ( x ) d x
If the solution to the integral above can be expressed in the form a + b π , where a and b are rational, find b a .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ 0 1 sin − 1 x cos − 1 x d x = 2 π ∫ 0 1 sin − 1 x d x − ∫ 0 1 ( sin − 1 x ) 2 d x Note that cos − 1 x = 2 π − sin − 1 x By integration by parts
= 2 π x sin − 1 x ∣ ∣ ∣ ∣ 0 1 − ∫ 0 1 2 1 − x 2 π x d x − x ( sin − 1 x ) 2 ∣ ∣ ∣ ∣ 0 1 + ∫ 0 1 1 − x 2 2 x sin − 1 x d x = 4 π 2 + 2 π 1 − x 2 ∣ ∣ ∣ ∣ 0 1 − 4 π 2 − 2 1 − x 2 sin − 1 x ∣ ∣ ∣ ∣ 0 1 + 2 ∫ 0 1 d x = − 2 π − 0 + 2 = 2 − 2 π
Therefore, b a = − 2 1 2 = − 4 .
We have, using the substitution y = cos 2 θ , ∫ 0 1 sin − 1 x d x = ∫ 0 1 ∫ 0 x 1 − y 2 d y d x = ∫ 0 1 ∫ y 1 d x 1 − y 2 d y = ∫ 0 1 1 − y 2 1 − y d y = ∫ 0 1 1 + y 1 − y d y = ∫ 0 4 1 π tan θ × 2 sin 2 θ d θ = 4 ∫ 0 4 1 π sin 2 θ d θ = [ 2 θ − sin 2 θ ] 0 4 1 π = 2 1 π − 1 and ∫ 0 1 ( sin − 1 x ) 2 d x = [ x ( sin − 1 x ) 2 ] 0 1 − 2 ∫ 0 1 1 − x 2 x sin − 1 x d x = 4 1 π 2 − 2 ∫ 0 1 1 − x 2 x ∫ 0 x 1 − y 2 d y d x = 4 1 π 2 − 2 ∫ 0 1 1 − y 2 1 ∫ y 1 1 − x 2 x d x d y = 4 1 π 2 − 2 ∫ 0 1 1 − y 2 1 [ − 1 − x 2 ] y 1 d y = 4 1 π 2 − 2 ∫ 0 1 d y = 4 1 π 2 − 2 so that ∫ 0 1 sin − 1 x cos − 1 x d x = ∫ 0 1 sin − 1 x ( 2 1 π − sin − 1 x ) d x = 2 1 π ( 2 1 π − 1 ) − ( 4 1 π 2 − 2 ) = 2 − 2 1 π making a = 2 , b = − 2 1 , and hence b a = − 4 .
@Mark Hennings Sir, an easier approach in my opinion would be substituting arcsin(x) as t and then proceeding in a single integral and a simple Integration by Parts.........
Problem Loading...
Note Loading...
Set Loading...
we make substitution of sin − 1 x = u which gives us d x = cos u d u . Thus we have I = ∫ 0 2 1 π u cos u cos − 1 ( cos ( 2 π − u ) ) d u = 2 π ∫ 0 2 1 π u cos u d u − ∫ 0 2 1 π u 2 cos u d u Using IBP we evalute the integrals as 2 π ∫ 0 2 1 π u cos u d u = 4 π 2 − 2 π and using IBP twice ∫ 0 2 1 π u 2 cos u d u = 4 π 2 − 2 which gives us I = ( 4 π 2 − 2 π ) − ( 4 π 2 − 2 ) = 2 − 2 π thus b a = − 4
Here is the generalized problem.