Must it be a cubic?

Algebra Level 3

x 3 12 x 2 + 36 x + 8 \large x^3 - 12x^2 + 36 x + 8

If x = 4 + 4 1 / 3 + 4 2 / 3 x = 4 + 4^{1/3} + 4^{2/3} , find the value of the expression above.


The answer is 44.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x 4 = 4 3 + 16 3 x-4=\sqrt[3]{4}+\sqrt[3]{16}

Now, cube both sides:

x 3 12 x 2 + 48 x 64 = 4 + 3 4 3 16 3 ( 4 3 + 16 3 ) + 16 x 3 12 x 2 + 48 x 64 = 20 + 3 64 3 ( x 4 ) x 3 12 x 2 + 48 x 64 = 20 + 12 x 48 x 3 12 x 2 + 36 x 36 = 0 x^3-12x^2+48x-64=4+3\sqrt[3]{4}\sqrt[3]{16}(\sqrt[3]{4}+\sqrt[3]{16})+16 \\ x^3-12x^2+48x-64=20+3\sqrt[3]{64}(x-4) \\ x^3-12x^2+48x-64=20+12x-48 \\ x^3-12x^2+36x-36=0

Finally, add 44 44 to both sides:

x 3 12 x 2 + 36 x + 8 = 44 x^3-12x^2+36x+8=\boxed{44}

There's a comparatively simpler way. We have,

x = 4 1 / 3 + 4 2 / 3 + 4 = 4 1 / 3 ( 1 + 4 1 / 3 + 4 2 / 3 ) = 4 1 / 3 ( 1 + x 4 ) x 3 = ( 4 1 / 3 ) 3 ( x 3 ) 3 = 4 ( x 3 ) 3 x=4^{1/3}+4^{2/3}+4=4^{1/3}\left(1+4^{1/3}+4^{2/3}\right)=4^{1/3}(1+x-4)\\\implies x^3=(4^{1/3})^3\cdot (x-3)^3=4(x-3)^3

Expanding the RHS using binomial theorem and taking all terms to one side of equation, we immediately get,

x 3 12 x 2 + 36 x 36 = 0 x 3 12 x 2 + 36 x + 8 = 36 + 8 = 44 x^3-12x^2+36x-36=0\implies x^3-12x^2+36x+8=36+8=\boxed{44}

Prasun Biswas - 5 years, 12 months ago

Log in to reply

Yeah, you always simplify everything.

Alan Enrique Ontiveros Salazar - 5 years, 12 months ago

Log in to reply

Haha, I just try to. :P

Prasun Biswas - 5 years, 12 months ago

nice solution.

Raven Herd - 5 years, 11 months ago

thank you for the solution but where did you get the (x-3) from thank you

kool guy - 5 years, 1 month ago

@Prasun Biswas RHS means the Right angle - Hypotenuse - Side congruence of the condition of being congruent with the right triangle.

. . - 3 months ago
Chew-Seong Cheong
Jun 14, 2015

x 3 12 x 2 + 36 x + 8 = x 3 3 ( 4 ) x 2 + 3 ( 4 2 ) x + 4 3 12 x + 72 = ( x 4 ) 3 12 ( x 4 ) + 24 = ( 4 3 + 16 3 ) 3 12 ( 4 3 + 16 3 ) + 24 = 4 + 3 ( 4 3 ) 2 ( 16 3 ) + 3 ( 4 3 ) ( 16 3 ) 2 + 16 12 4 3 12 16 3 + 24 = 4 + 12 4 3 + 12 16 3 + 16 12 4 3 12 16 3 + 24 = 44 \begin{aligned} x^3-12x^2+36x+8 & = x^3 - 3(4)x^2+3(4^2)x + 4^3 - 12 x + 72 \\ & = (x-4)^3 - 12(x-4) + 24 \\ & = (\sqrt[3]{4} + \sqrt[3]{16})^3 - 12(\sqrt[3]{4} + \sqrt[3]{16}) + 24 \\ & = 4 + 3(\sqrt[3]{4})^2(\sqrt[3]{16}) + 3(\sqrt[3]{4})(\sqrt[3]{16})^2 + 16 \\ & \quad \quad - 12\sqrt[3]{4} - 12\sqrt[3]{16} + 24 \\ & = 4 + 12\sqrt[3]{4} + 12\sqrt[3]{16} + 16 - 12\sqrt[3]{4} - 12\sqrt[3]{16} + 24 \\ & = \boxed{44} \end{aligned}

( a + b ) 3 = a 3 + a 2 b + a b 2 + b 3 ( a + b ) ^ { 3 } = a ^ { 3 } + a ^ { 2 } b + ab ^ { 2 } + b ^ { 3 } , and ( a b ) 3 = a 3 a 2 b + a b 2 b 3 ( a - b ) ^ { 3 } = a ^ { 3 } - a ^ { 2 } b + ab ^ { 2 } - b ^ { 3 } .

Then if ( x 4 ) 3 ( x - 4 ) ^ { 3 } , then it must be x 3 3 ( 4 ) x 2 + 3 ( 4 2 ) x 4 3 12 x + 72 x ^ { 3 } - 3 ( 4 ) x ^ { 2 } + 3 ( 4 ^ { 2 } ) x \boxed { - 4 ^ { 3 } } - 12x + 72 .

. . - 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...