Just substitution right?

Algebra Level 3

If x = 6 + 7 x=6 + \sqrt{7} , find the value of x 3 18 x 2 + 101 x 132 x^3 - 18x^2 + 101x-132 .


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Paola Ramírez
Jun 14, 2015

One way of solve it is:

x 2 ( x 18 ) + 101 x 132 x^2(x-18)+101x-132

x 2 ( 6 + 7 18 ) + 101 x 132 x^2(6+\sqrt{7}-18)+101x-132

x 2 ( 7 12 ) + 101 x 132 x^2(\sqrt{7}-12)+101x-132

x ( ( 7 12 ) ) ( 6 + 7 ) + 101 ) 132 x((\sqrt{7}-12))(6+\sqrt{7})+101)-132

( 6 + 7 ) ( 36 6 7 ) 132 (6+\sqrt{7})(36-6\sqrt{7})-132

216 + 36 6 36 6 42 132 = 42 \boxed{216+36\sqrt{6}-36\sqrt{6}-42-132=42}

Actually I posted this problem to find more and more newer solutions .Currently , I have three solutions (including yours).Good job!

Raven Herd - 5 years, 11 months ago

First let's find the minimal polynomial of x x :

x 6 = 7 x 2 12 x + 36 = 7 x 2 12 x + 29 = 0 x-6=\sqrt{7} \\ x^2-12x+36=7 \\ x^2-12x+29=0

Now use polynomial long division to obtain:

x 3 18 x 2 + 101 x 132 = ( x 6 ) ( x 2 12 x + 29 ) + 42 x 3 18 x 2 + 101 x 132 = ( x 6 ) ( 0 ) + 42 x 3 18 x 2 + 101 x 132 = 42 x^3-18x^2+101x-132=(x-6)(x^2-12x+29)+42 \\ x^3-18x^2+101x-132=(x-6)(0)+42 \\ x^3-18x^2+101x-132=\boxed{42}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...