If x = 6 + 7 , find the value of x 3 − 1 8 x 2 + 1 0 1 x − 1 3 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Actually I posted this problem to find more and more newer solutions .Currently , I have three solutions (including yours).Good job!
First let's find the minimal polynomial of x :
x − 6 = 7 x 2 − 1 2 x + 3 6 = 7 x 2 − 1 2 x + 2 9 = 0
Now use polynomial long division to obtain:
x 3 − 1 8 x 2 + 1 0 1 x − 1 3 2 = ( x − 6 ) ( x 2 − 1 2 x + 2 9 ) + 4 2 x 3 − 1 8 x 2 + 1 0 1 x − 1 3 2 = ( x − 6 ) ( 0 ) + 4 2 x 3 − 1 8 x 2 + 1 0 1 x − 1 3 2 = 4 2
Problem Loading...
Note Loading...
Set Loading...
One way of solve it is:
x 2 ( x − 1 8 ) + 1 0 1 x − 1 3 2
x 2 ( 6 + 7 − 1 8 ) + 1 0 1 x − 1 3 2
x 2 ( 7 − 1 2 ) + 1 0 1 x − 1 3 2
x ( ( 7 − 1 2 ) ) ( 6 + 7 ) + 1 0 1 ) − 1 3 2
( 6 + 7 ) ( 3 6 − 6 7 ) − 1 3 2
2 1 6 + 3 6 6 − 3 6 6 − 4 2 − 1 3 2 = 4 2