Simple isn't it? #9

What will be the time (in seconds) taken by a small stone to reach the surface of the Earth if it is dropped from a height R 4 \frac{R}{4} .

Details

  • R R = radius of earth = 6400 6400 km
  • M M = mass of earth = 6 × 1 0 24 6\times 10^{24} kg

This problem is of this set.


The answer is 690.534.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Dec 28, 2015

Here's the solution :

By energy conservation we have :

1 2 m v 2 G m m e a r t h x = 4 G m m e a r t h 5 R \displaystyle \frac { 1 }{ 2 } m{ v }^{ 2 }-\frac { Gm{ m }_{ earth } }{ x } =-\frac { 4Gm{ m }_{ earth } }{ 5R }

v = 2 G m e 5 R x ( 5 R 4 x ) \displaystyle \Rightarrow v = \sqrt { \frac { 2G{ m }_{ e } }{ 5Rx } (5R-4x) }

To find out T T , we have :

T 2 G m e 5 R = R 5 R / 4 x 5 R 4 x d x \displaystyle T\sqrt { \frac { 2G{ m }_{ e } }{ 5R } } =\int _{ R }^{ 5R/4 }{ \sqrt { \frac { x }{ 5R-4x } } dx }

T = 5 R 3 2 G m e 1 5 / 4 x 5 4 x d x \displaystyle T=\sqrt { \frac { 5{ R }^{ 3 } }{ 2G{ m }_{ e } } } \int _{ 1 }^{ 5/4 }{ \sqrt { \frac { x }{ 5-4x } } dx }

Now the integral is equal to = 1 16 ( 5 π + 4 10 tan 1 ( 2 ) ) = 0.53978 \displaystyle =\dfrac{1}{16}(5\pi+4-10{\tan}^{-1}(2))= 0.53978

Putting the values we have :

T = 690.534 s \displaystyle T = 690.534 s

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...