Simple IVP with Laplace

Calculus Level 3

Solve the initial value problem y ( t ) + y ( t ) = t y''(t) + y(t) = t , { y ( 0 ) = 1 y ( 0 ) = 1 \begin{cases} y(0) = 1\\y'(0) = 1\end{cases} by using the Laplace transform method.

1 sin ( t ) 1 - \sin(t) t + sin ( t ) t + \sin(t) t + cos ( t ) t + \cos(t) sin 2 ( t ) \sin^2(t)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ingrid Spangler
May 15, 2018

L{y''(t)} = S²Y(S) - SY'(0) - Y(0)

L{y(t)} = Y(S)

L{t} = 1 S ² \frac{1}{S²}

With the values Y(0) = 1 and Y'(0) = 1...

S²Y(S) - S - 1 + Y(S) = 1 S ² \frac{1}{S²}

(S² + 1)Y(S) = 1 S ² \frac{1}{S²} + S + 1

Y(S) = 1 S ² ( S ² + 1 ) \frac{1}{S²(S² + 1)} + S ( S ² + 1 ) \frac{S}{(S² + 1)} + 1 ( S ² + 1 ) \frac{1}{(S² + 1)}

Now solving partial fractions for the denominator of just the first one A S ² \frac{A}{S²} + B ( S ² + 1 ) \frac{B}{(S² + 1)}

A = -B

1 S ² \frac{1}{S²} - 1 ( S ² + 1 ) \frac{1}{(S² + 1)}

gives us three defined laplace transforms

L⁻¹{ 1 S ² ( S ² + 1 ) \frac{1}{S²(S² + 1)} } = t - sin(t)

L⁻¹{ S ( S ² + 1 ) \frac{S}{(S² + 1)} } = cos(t)

L⁻¹{ 1 ( S ² + 1 ) \frac{1}{(S² + 1)} } = sin(t)

answer: Y(S) = t + cos(t)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...