Simple modular arithmetic for you

80 ! x ( m o d 1 0 20 ) \large 80! \equiv x \pmod {10^{20}}

Find the sum of digits of x x .

4 6 3 8 0 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

80 ! n = 1 80 n ( m o d 1 0 20 ) Since 80! has 19 trial zeros 1 0 19 n 5 80 n ( m o d 1 0 20 ) ( 2 78 19 ( 3 × 3 × 7 × 9 ) 8 m o d 10 ) × 1 0 19 ( m o d 1 0 20 ) ( 2 59 × 3 32 × 7 8 m o d 10 ) × 1 0 19 ( m o d 1 0 20 ) ( 2 3 ( 1 6 14 ) × ( 10 1 ) 16 × ( 50 1 ) 4 m o d 10 ) × 1 0 19 ( m o d 1 0 20 ) ( 8 ( 6 ) × 1 × 1 m o d 10 ) × 1 0 19 ( m o d 1 0 20 ) 8 × 1 0 19 ( m o d 1 0 20 ) \begin{aligned} 80! & \equiv \prod_{n=1}^{80} n \pmod {10^{20}} & \small \blue{\text{Since 80! has 19 trial zeros}} \\ & \equiv 10^{19} \prod_{n\ \nmid\ 5}^{80} n \pmod {10^{20}} \\ & \equiv \left( 2^{78-19}(3\times3 \times 7 \times 9)^8 \bmod 10\right)\times 10^{19} \pmod {10^{20}} \\ & \equiv \left( 2^{59} \times 3^{32} \times 7^8 \bmod 10\right)\times 10^{19} \pmod {10^{20}} \\ & \equiv \left( 2^3(16^{14}) \times (10-1)^{16} \times (50-1)^4 \bmod 10\right)\times 10^{19} \pmod {10^{20}} \\ & \equiv \left( 8(6) \times 1 \times 1 \bmod 10\right)\times 10^{19} \pmod {10^{20}} \\ & \equiv 8 \times 10^{19} \pmod {10^{20}} \end{aligned}

Therefore x = 8 × 1 0 19 x = 8 \times 10^{19} and the sum of digits of x x is 8 \boxed 8 .

Why 3 appears twice in step 3?

A Former Brilliant Member - 1 year, 8 months ago

Log in to reply

One for 3 and another for 6.

Chew-Seong Cheong - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...