Simple modular arithmetic

3 999 x ( m o d 100 ) \large 3^{999} \equiv x \pmod {100}

Find the value of x x .


The answer is 67.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Arifin Ikram
Oct 8, 2019

From Euler's theorem, we get, 3 ϕ ( 100 ) 3 40 1 ( m o d 100 ) 3^{\phi(100)}\equiv 3^{40} \equiv 1 \pmod {100} ........ ( 1 ) (1)

Let, 3 999 x ( m o d 100 ) 3^{999} \equiv x \pmod {100}

3 1000 3 x ( m o d 100 ) \Rightarrow 3^{1000} \equiv 3x \pmod {100}

( 3 40 ) 25 3 x ( m o d 100 ) \Rightarrow (3^{40})^{25} \equiv 3x \pmod {100}

( 1 ) 25 3 x ( m o d 100 ) \Rightarrow (1)^{25} \equiv 3x \pmod {100} [ F r o m ( 1 ) ] [ From (1)]

1 3 x ( m o d 100 ) \Rightarrow 1 \equiv 3x \pmod {100}

99 3 x ( m o d 100 ) \Rightarrow -99 \equiv 3x \pmod {100}

33 x ( m o d 100 ) \Rightarrow -33 \equiv x \pmod {100}

67 x ( m o d 100 ) \Rightarrow 67 \equiv x \pmod {100}

So, x = 67 x=\boxed{67}

3^999 = (3^40)^24 * 3^39 , so 3^39 ≡ x mod (100)

Then, 3^40 ≡ 3x ≡ 1 ; 3x ≡ 1, trying with 201 we get x = 67

Fahim Muhtamim
Oct 7, 2019

3 20 1 ( m o d 100 ) 3^{20}≡1(mod 100) & 3 19 67 ( m o d 100 ) 3^{19}≡67(mod 100) So, 3 999 = ( 3 20 ) 49 3 19 1 49 67 ( m o d 100 ) 3^{999}=(3^{20})^{49}*3^{19}≡1^{49}*67(mod 100) 67 ( m o d 100 ) 67(mod 100)

3 999 3 × 3 2 × 499 (mod 100) 3 × ( 10 1 ) 499 (mod 100) 3 × ( + 499 × 10 1 ) (mod 100) 3 × 89 67 (mod 100) \begin{aligned} 3^{999} & \equiv 3\times 3^{2\times 499} \text{ (mod 100)} \\ & \equiv 3\times (10-1)^{499} \text{ (mod 100)} \\ & \equiv 3\times (\cdots + 499\times 10 -1) \text{ (mod 100)} \\ & \equiv 3\times 89 \equiv \boxed{67} \text{ (mod 100)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...