Simple Prob

Calculus Level 3

0 π 4 x k = 1 cos ( x 2 k ) d x = ? \int_0^{\frac π4} x \prod_{k=1}^\infty \cos \left( \frac {x}{2^k} \right) dx = ?


The answer is 0.293.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 0 π 4 x k = 1 cos ( x 2 k ) d x Note that k = 1 cos ( x 2 k ) = sinc ( x ) (see proof) = 0 π 4 x sinc ( x ) d x where sinc ( x ) = { 1 for x = 0 sin x x otherwise = 0 π 4 sin x d x = cos x 0 π 4 = 1 2 + 1 0.293 \begin{aligned} I & = \int_0^\frac \pi 4 x {\color{#3D99F6} \prod_{k=1}^\infty \cos \left(\frac x{2^k} \right)} dx & \small \color{#3D99F6} \text{Note that }\prod_{k=1}^\infty \cos \left(\frac x{2^k} \right) = \text{sinc }(x) \text{ (see proof)} \\ & = \int_0^\frac \pi 4 x {\color{#3D99F6} \text{ sinc }(x)} \ dx & \small \color{#3D99F6} \text{where }\text{sinc }(x) = \begin{cases} 1 & \text{for }x = 0 \\ \frac {\sin x}x & \text{otherwise} \end{cases} \\ & = \int_0^\frac \pi 4 \sin x \ dx = - \cos x \ \bigg|_0^\frac \pi 4 \\ & = - \frac 1{\sqrt 2} + 1 \approx \boxed{0.293} \end{aligned} .


Proof:

k = 1 n cos ( x 2 k ) = cos x 2 n cos x 2 n 1 cos x 4 cos x 2 = sin x 2 n cos x 2 n cos x 2 n 1 cos x 4 cos x 2 sin x 2 n = sin x 2 n 1 cos x 2 n 1 cos x 2 n 2 cos x 4 cos x 2 2 sin x 2 n = sin x 2 n 2 cos x 2 n 2 cos x 2 n 3 cos x 4 cos x 2 4 sin x 2 n = = sin x 2 cos x 2 2 n 1 sin x 2 n = sin x 2 n sin x 2 n \begin{aligned} \prod_{k=1}^n \cos \left(\frac x{2^k} \right) & = \cos \frac x{2^n} \cos \frac x{2^{n-1}} \cdots \cos \frac x4 \cos \frac x2 \\ & = \frac {{\color{#3D99F6}\sin \frac x{2^n}} \cos \frac x{2^n} \cos \frac x{2^{n-1}} \cdots \cos \frac x4 \cos \frac x2}{\color{#3D99F6} \sin \frac x{2^n}} \\ & = \frac {{\color{#3D99F6}\sin \frac x{2^{n-1}}} \cos \frac x{2^{n-1}} \cos \frac x{2^{n-2}} \cdots \cos \frac x4 \cos \frac x2}{{\color{#3D99F6}2} \sin \frac x{2^n}} \\ & = \frac {{\color{#3D99F6}\sin \frac x{2^{n-2}}} \cos \frac x{2^{n-2}} \cos \frac x{2^{n-3}} \cdots \cos \frac x4 \cos \frac x2}{{\color{#3D99F6}4} \sin \frac x{2^n}} \\ & = \cdots \quad \cdots \quad \cdots \\ & = \frac {\sin \frac x2 \cos \frac x2}{2^{n-1}\sin \frac x{2^n}} = \frac {\sin x}{2^n \sin \frac x{2^n}} \end{aligned}

Therefore, lim n k = 1 n cos ( x 2 k ) = lim n sin x 2 n sin x 2 n = lim n sin x x sin x 2 n x 2 n = sin x x \displaystyle \lim_{n \to \infty} \prod_{k=1}^n \cos \left(\frac x{2^k} \right) = \lim_{n \to \infty} \frac {\sin x}{2^n \sin \frac x{2^n}} = \lim_{n \to \infty} \frac {\sin x}{\frac {x\sin \frac x{2^n}}{\frac x{2^n}}} = \frac {\sin x}x . Note that for x = 0 x=0 , k = 1 cos ( x 2 k ) = 1 \displaystyle \prod_{k=1}^\infty \cos \left(\frac x{2^k} \right) = 1 .

k = 1 cos ( x 2 k ) = sinc ( x ) = { 1 for x = 0 sin x x otherwise \displaystyle \implies \prod_{k=1}^\infty \cos \left(\frac x{2^k} \right) = \text{sinc }(x) = \begin{cases} 1 & \text{for }x=0 \\ \dfrac {\sin x}x & \text{otherwise} \end{cases}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...