Simple Problem on Limits!

Calculus Level 4

L = lim n ( 1 3 5 + 2 4 5 + 3 5 5 + + n ( n + 2 ) 5 ) \large{L=\lim_{n \to \infty} \left( \dfrac1{3^5} + \dfrac2{4^5} + \dfrac3{5^5} + \ldots + \dfrac{n}{(n+2)^5} \right)}

Choose the correct option.

You are given that ζ ( 5 ) 1.03692 \zeta(5) \approx 1.03692 .

0.1 < L 1 0.1 < L \leq 1 L 0.01 L \leq 0.01 L > 1 L > 1 0.01 < L 0.1 0.01 < L \leq 0.1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Maggie Miller
Jul 23, 2015

k = 1 k ( k + 2 ) 5 = k = 1 k + 2 ( k + 2 ) 5 k = 1 2 ( k + 2 ) 5 \displaystyle\sum_{k=1}^{\infty}\frac{k}{(k+2)^5}=\sum_{k=1}^{\infty}\frac{k+2}{(k+2)^5}-\sum_{k=1}^{\infty}\frac{2}{(k+2)^5}

= k = 1 1 ( k + 2 ) 4 2 k = 1 1 ( k + 2 ) 5 \displaystyle=\sum_{k=1}^{\infty}\frac{1}{(k+2)^4}-2\sum_{k=1}^{\infty}\frac{1}{(k+2)^5}

= ( π 4 90 1 1 16 ) 2 ( ζ ( 5 ) 1 1 32 ) \displaystyle=\left(\frac{\pi^4}{90}-1-\frac{1}{16}\right)-2\left(\zeta(5)-1-\frac{1}{32}\right)

= π 4 90 + 1 2 ζ ( 5 ) . 008 < . 01 \displaystyle=\frac{\pi^4}{90}+1-2\zeta(5)\approx.008\boxed{<.01} .

@Maggie Miller Can u please elaborate which concept u used in the second step to arrive at pi^4/90-1-1/16

Tejas Suresh - 5 years, 10 months ago

Log in to reply

It's well-known that k = 1 1 k 4 = π 4 90 \displaystyle\sum_{k=1}^{\infty}\frac{1}{k^4}=\frac{\pi^4}{90} (you can prove this with Fourier trig series, but I think for this problem it's ok to just take this value as fact).

Then

k = 1 1 ( k + 2 ) 4 = k = 3 1 k 4 \displaystyle\sum_{k=1}^{\infty}\frac{1}{(k+2)^4}=\sum_{k=3}^{\infty}\frac{1}{k^4}

= k = 1 1 k 4 1 1 4 1 2 4 \displaystyle=\sum_{k=1}^{\infty}\frac{1}{k^4}-\frac{1}{1^4}-\frac{1}{2^4}

= π 4 90 1 1 16 \displaystyle=\frac{\pi^4}{90}-1-\frac{1}{16} .

Maggie Miller - 5 years, 10 months ago

Did in jee style check for first 5 terms(without calculator :P ) you will get it

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...