Simple question

Probability Level pending

Calculate k = 1 1008 ( 2017 k ) \sum_{k=1}^{1008} \binom{2017}{k}

2 2017 1 2^{2017}-1 2 2016 2^{2016} 2 2016 1 2^{2016}-1 2 2017 2 2^{2017}-2 2 2016 2 2^{2016}-2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Apr 26, 2017

Using binomial expansion for ( 1 + x ) n (1+x)^n , we have

( 1 + x ) n = k = 0 n ( n k ) x k \displaystyle (1+x)^n = \sum_{k=0}^n \dbinom{n}{k} x^k

Note that

( n k ) = ( n n k ) \dbinom{n}{k} = \dbinom{n}{n-k}

Thus, for odd n n we can write

( 1 + x ) n = k = 0 n ( n k ) x k = 2 k = 0 ( n 1 ) / 2 ( n k ) x k \displaystyle (1+x)^n = \sum_{k=0}^n \dbinom{n}{k} x^k = 2 \sum_{k=0}^{ {(n-1)}/{2} } \dbinom{n}{k} x^k

Putting x = 1 x=1 and n = 2017 n=2017 gives

2 2017 = 2 k = 0 1008 ( 2017 k ) 2 2017 = 2 ( k = 1 1008 ( 2017 k ) + 1 ) k = 1 1008 ( 2017 k ) = 2 2017 2 2 = 2 2016 1 \begin{aligned} & \displaystyle 2^{2017} = 2 \sum_{k=0}^{1008} \dbinom{2017}{k} \\ \implies & \displaystyle 2^{2017} = 2 \left( \sum_{k=1}^{1008} \dbinom{2017}{k} + 1 \right) \\ \implies & \displaystyle \sum_{k=1}^{1008} \dbinom{2017}{k} = \dfrac{2^{2017}-2}{2} = \boxed{2^{2016}-1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...