Simple Series!

Calculus Level 5

1 + 1 × 3 6 + 1 × 3 × 5 6 × 8 + 1 × 3 × 5 × 7 6 × 8 × 10 + 1 × 3 × 5 × 7 × 9 6 × 8 × 10 × 12 + . . . 1+\frac { 1\times 3 }{ 6 } +\frac { 1\times 3\times 5 }{ 6\times 8 } +\frac { 1\times 3\times 5\times 7 }{ 6\times 8\times 10 } +\frac { 1\times 3\times 5\times 7\times 9 }{ 6\times 8\times 10\times 12}+...

What is the sum of this infinite series above?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Swagat Panda
Aug 15, 2016

Let the sum of the series be S \text{Let the sum of the series be } S 1 + 1 × 3 6 + 1 × 3 × 5 6 × 8 + 1 × 3 × 5 × 7 6 × 8 × 10 + 1 × 3 × 5 × 7 × 9 6 × 8 × 10 × 12 + = S 1+\dfrac { 1\times 3 }{ 6 } +\dfrac { 1\times 3\times 5 }{ 6\times 8 } +\dfrac { 1\times 3\times 5\times 7 }{ 6\times 8\times 10 } +\dfrac { 1\times 3\times 5\times 7\times 9 }{ 6\times 8\times 10\times 12 }+ \cdots =S S = 4 × 2 ( 1 2 × 4 + 1 × 3 2 × 4 × 6 + 1 × 3 × 5 2 × 4 × 6 × 8 + 1 × 3 × 5 × 7 2 × 4 × 6 × 8 × 10 + 1 × 3 × 5 × 7 × 9 2 × 4 × 6 × 8 × 10 × 12 + ) S = 4 × 2 ( P ) ( 1 ) \Rightarrow S= 4\times 2 \left(\dfrac{1}{2\times4}+\dfrac { 1\times 3 }{ 2\times 4\times 6 } +\dfrac { 1\times 3\times 5 }{ 2\times 4\times 6\times 8 } +\dfrac { 1\times 3\times 5\times 7 }{2\times 4\times 6\times 8\times 10 } +\dfrac { 1\times 3\times 5\times 7\times 9 }{ 2\times 4\times 6\times 8\times 10\times 12 }+ \cdots\right) \\ \Rightarrow \boxed{S= 4\times2 \left( P \right)} \quad \cdots(1) ; where P = 1 2 × 4 + 1 × 3 × 5 2 × 4 × 6 × 8 + 1 × 3 × 5 × 7 2 × 4 × 6 × 8 × 10 + 1 × 3 × 5 × 7 × 9 2 × 4 × 6 × 8 × 10 × 12 + \text{; where }P=\dfrac { 1 }{ 2\times 4 } +\dfrac { 1\times 3\times 5 }{ 2\times 4\times 6\times 8 } +\dfrac { 1\times 3\times 5\times 7 }{2\times 4\times 6\times 8\times 10 } +\dfrac { 1\times 3\times 5\times 7\times 9 }{ 2\times 4\times 6\times 8\times 10\times 12 }+ \cdots

To evaluate P we have: \text{To evaluate } P \text{ we have:} ( 1 x ) 1 / 2 = 1 x 2 x 2 2 × 4 1 × 3 × x 3 2 × 4 × 6 1 × 3 × 5 × x 4 2 × 4 × 6 × 8 (1-x)^{1/2}=1-\dfrac{x}{2}-\dfrac{x^{2}}{2\times 4}-\dfrac{1\times 3\times x^{3}}{2\times 4\times 6} -\dfrac{1\times 3\times 5\times x^4}{2\times 4\times 6\times 8} \cdots Putting x = 1 gives \text{Putting } x=1 \text{ gives } 0 = 1 1 2 P P = 1 2 0=1-\dfrac{1}{2}-P \Rightarrow \boxed{P=\dfrac{1}{2}} Putting this value of P in equation ( 1 ) we get: \text{ Putting this value of } P \text{ in equation } (1) \text{ we get:} S = 4 × 2 ( 1 2 ) = 4 \boxed{S= 4\times 2 \left(\dfrac12 \right)=4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...