Simple Series Problem

Algebra Level 4

Five numbers a , b , c , d a,b,c,d and e e are in geometric progression where a < b < c < d < e . a<b<c<d<e. If a + e = 97 a+e=97 and b + d = 78 , b+d=78, then what is the value of c ? c?


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Dec 16, 2014

Let the common ratio the GP { a , b , c , d , e } \{a,b,c,d,e\} be r r .

Then we have:

a + e = c r 2 + c r 2 = c ( 1 r 2 + r 2 ) = 97 a + e = \dfrac {c} {r^2} + cr^2 = c \left( \dfrac {1}{r^2} + r^2 \right) = 97

Similarly,

b + d = c ( 1 r + r ) = 78 b + d = c \left( \dfrac {1}{r} + r \right) = 78

Dividing the two equations, we have:

a + e b + d = 1 r 2 + r 2 1 r + r = 1 r 2 + 2 + r 2 2 1 r + r = ( 1 r + r ) 2 2 1 r + r = 97 78 \dfrac {a+e}{b+d} = \dfrac {\dfrac {1}{r^2} + r^2} {\dfrac {1}{r} + r} = \dfrac {\dfrac {1}{r^2} + 2+ r^2 -2} {\dfrac {1}{r} + r} = \dfrac {\left( \dfrac {1}{r} + r \right)^2 - 2} {\dfrac {1}{r} + r} = \dfrac {97}{78}

Let x = 1 r + r x = \dfrac {1}{r} + r , then we have:

x 2 2 x = 97 78 78 x 2 97 x 156 = 0 x = 1 r + r = 12 13 \dfrac {x^2 - 2} {x} = \dfrac {97}{78}\quad \Rightarrow 78x^2 - 97x -156 = 0\quad \Rightarrow x = \dfrac {1}{r} + r = - \frac {12}{13} or 13 6 \frac {13}{6}

13 r 2 + 12 r + 13 = 0 \Rightarrow 13r^2+12r+13 = 0 or 6 r 2 13 r + 6 = 0 6r^2-13r+6 = 0 .

We find that 13 r 2 + 12 r + 13 = 0 13r^2+12r+13 = 0 has no real roots.

And from 6 r 2 13 r + 6 = 0 6r^2-13r+6 = 0 we get r = 3 2 r = \frac {3}{2} or 2 3 \frac {2}{3} .

Substituting r = 3 2 r = \frac {3}{2} in b + d = c ( 1 r + r ) = 78 b + d = c \left( \dfrac {1}{r} + r \right) = 78 , we get:

( 2 3 + 3 2 ) c = 13 6 c = 78 c = 36 \left( \dfrac {2}{3} + \dfrac {3}{2} \right) c = \dfrac {13}{6} c = 78\quad \Rightarrow c = \boxed {36}

Note that we still get c = 36 c=36 if we use r = 2 3 r = \frac {2}{3} .

Easy One ! Btw Nice Soution! :)

Keshav Tiwari - 6 years, 5 months ago

see not a chemo brain but a genius brain

Kaustubh Miglani - 5 years, 11 months ago
Rab Gani
Aug 8, 2020

let a=ar^-2,b=ar-1.c=a, d=ar,e=ar^2, a+e=a(r^-2+r^2) = 97, and b+d =(r^-1+r)=78, both two equation can be combined to 2a^2 +97a - 78^2=0,. Then a= 36

Guilherme Niedu
May 18, 2020

Let us call the common ratio q q :

( i ) c q 2 + c q 2 = 97 \large \displaystyle \color{#D61F06} \ (i) \color{#333333} \ \frac{c}{q^2} + cq^2 = 97

( i i ) c q + c q = 78 \large \displaystyle \color{#D61F06} \ (ii) \color{#333333} \ \frac{c}{q} + cq = 78

Multiplying ( i ) (i) by c c :

( i i i ) c 2 q 2 + c 2 q 2 = 97 c \large \displaystyle \color{#D61F06} \ (iii) \color{#333333} \ \frac{c^2}{q^2} + c^2q^2 = 97c

Squaring ( i i ) (ii) :

( i v ) c 2 q 2 + c 2 q 2 + 2 c 2 = 6084 \large \displaystyle \color{#D61F06} \ (iv) \color{#333333} \ \frac{c^2}{q^2} + c^2q^2 + 2c^2 = 6084

Substituting ( i i i ) (iii) into ( i v ) (iv) :

2 c 2 + 97 c 6084 = 0 \large \displaystyle 2c^2 + 97c - 6084 = 0

This has roots 36 36 and 84.5 -84.5 . But if c = 84.5 c = -84.5 we wouldn't have real q q (it's easy to check just by substituting c c into ( i i ) (ii) ). Thus:

c = 36 \color{#3D99F6} \boxed{ \large \displaystyle c = 36}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...