Simple Substitution, Right?

Algebra Level 3

Find the value of the following expression f ( x ) f ( y ) 1 2 ( f ( x y ) + f ( x y ) ) f(x)f(y)-\dfrac 12\left(f\left(\dfrac xy\right)+f(xy)\right) where f ( x ) = cos ( log x ) f(x)=\cos(\log x) .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sravanth C.
May 28, 2016

Relevant wiki: Logarithms

Substituting the function in the given expression we get; E = cos ( log x ) cos ( log y ) 1 2 ( cos ( log x y ) + cos ( log x y ) ) = cos ( log x ) cos ( log y ) 1 2 ( cos ( log x log y ) + cos ( log x + log y ) ) \begin{aligned} \mathfrak E&=\cos(\log x)\cos(\log y)-\dfrac 12\left(\cos(\log \dfrac xy)+\cos(\log xy)\right)\\ &=\cos(\log x)\cos(\log y)-\dfrac 12\left(\cos(\log x- \log y)+\cos(\log x +\log y)\right)\\ \end{aligned}

Substitute log x = A \log x = A and log y = B \log y = B , we get;

E = cos A cos B 1 2 ( cos A cos B sin A sin B + cos A cos B + sin A sin B ) = cos A cos B 1 2 ( 2 cos A cos B ) = 0 \begin{aligned} \mathfrak E&=\cos A\cos B-\dfrac 12(\cos A \cos B- \sin A \sin B+\cos A \cos B + \sin A\sin B)\\ &=\cos A\cos B-\dfrac 12\left(2\cos A\cos B\right)\\ &=\boxed 0 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...