Simple Sum

Algebra Level 1

What is n = 0 2000 n ? \displaystyle\sum _{ n=0 }^{ 2000 }{ n }?


The answer is 2001000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Isaiah Simeone
Jul 17, 2015

n = 0 k n = k ( k + 1 ) 2 \displaystyle\sum _{ n=0 }^{ k }{ n } =\frac { k(k+1) }{ 2 }

n = 0 2000 n = 2000 ( 2001 ) 2 \displaystyle\sum _{ n=0 }^{ 2000 }{ n } = \frac { 2000(2001) }{ 2 }

n = 0 2000 n = 1000 ( 2001 ) = 2001000 \displaystyle\sum _{ n=0 }^{ 2000 }{ n } = 1000(2001)=2001000

Moderator note:

Can you prove that n = 0 k n = k ( k + 1 ) 2 \displaystyle \sum_{n=0}^k n =\frac{k(k+1)}2 ?

Replying to the challenge master note. This proof can be completed through mathematical induction.

Prove: 1 + 2 + 3 + 4 + . . . + n = n ( n + 1 ) 2 1+2+3+4+...+n=\frac { n(n+1) }{ 2 }

Show for n=1

1 ( 1 + 1 ) 2 = 2 2 = 1 \frac { 1(1+1) }{ 2 } =\frac { 2 }{ 2 } = 1

Inductive hypothesis. Assume true for n=k

1 + 2 + 3 + 4 + . . . + k = k ( k + 1 ) 2 1+2+3+4+...+k=\frac { k(k+1) }{ 2 }

Prove for n=k+1

1 + 2 + 3 + 4 + . . . + k + ( k + 1 ) = ( k + 1 ) ( k + 2 ) 2 1+2+3+4+...+k+(k+1)=\frac { (k+1)(k+2) }{ 2 }

k ( k + 1 ) 2 + ( k + 1 ) = ( k + 1 ) ( k + 2 ) 2 \frac { k(k+1) }{ 2 } + (k+1) =\frac { (k+1)(k+2) }{ 2 }

k 2 + k 2 + 2 k + 2 2 = ( k + 1 ) ( k + 2 ) 2 \frac { { k }^{ 2 }+k }{ 2 } +\frac { 2k+2 }{ 2 } =\frac { (k+1)(k+2) }{ 2 }

k 2 + 3 k + 2 2 = k 2 + 3 k + 2 2 \frac { { k }^{ 2 }+3k+2 }{ 2 } =\frac { { k }^{ 2 }+3k+2 }{ 2 }

Q.E.D

isaiah simeone - 5 years, 10 months ago

Log in to reply

When n=2 doesnt work...

Pedro C - 2 years, 7 months ago

Use \displaystyle before the sum to make it look like this: n = 0 k n = k ( k + 1 ) 2 \displaystyle\sum _{ n=0 }^{ k }{ n } =\frac { k(k+1) }{ 2 }

Sravanth C. - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...