Sums

Algebra Level 2

n = 0 8 1 2 n = ? \large \sum_{n=0}^8\frac {1}{2^n} =\, ?

1 255 256 1 \frac {255}{256} 1 511 512 1 \frac {511}{512} 2 2 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Oscar Hildebrandt
May 25, 2016

Expand the series for each value of n n : 1 2 0 \frac {1}{2^0} + 1 2 1 \frac {1}{2^1} + 1 2 2 \frac {1}{2^2} + 1 2 3 \frac {1}{2^3} + 1 2 4 \frac {1}{2^4} + 1 2 5 \frac {1}{2^5} + 1 2 6 \frac {1}{2^6} + 1 2 7 \frac {1}{2^7} + 1 2 8 \frac {1}{2^8}

Simplify each term: 1 1 \frac {1}{1} + 1 2 \frac {1}{2} + 1 4 \frac {1}{4} + 1 8 \frac {1}{8} + 1 16 \frac {1}{16} + 1 32 \frac {1}{32} + 1 64 \frac {1}{64} + 1 128 \frac {1}{128} + 1 256 \frac {1}{256}

Find the common denominator: 256 256 \frac {256}{256} + 1 128 256 \frac {1 \cdot 128}{256} + 1 64 256 \frac {1 \cdot 64}{256} + 1 32 256 \frac {1 \cdot 32}{256} + 1 16 256 \frac {1 \cdot 16}{256} + 1 8 256 \frac {1 \cdot 8}{256} + 1 4 256 \frac {1 \cdot 4}{256} + 1 2 256 \frac {1 \cdot 2}{256} + 1 256 \frac {1}{256}

Combine the fractions: 256 + 1 128 + 1 64 + 1 32 + 1 16 + 1 8 + 1 4 + 1 2 + 1 256 \frac {256+1\cdot 128+1\cdot 64+1\cdot 32+1\cdot 16+1\cdot 8+1\cdot 4+1\cdot 2+1}{256}

Simplify the numerator: 511 256 \frac {511}{256}

Simplify again: 1 255 256 \frac {255}{256}

Can you show another simple way. ;)
Hint: G..... Progression

Log in to reply

It can of course also be solved by doing this:

1

1 + 1/2 = 3/2

1 + 1/2 + 1/4 = 7/4

1 + 1/2 + 1/4 + 1/8 = 15/8

1 + 1/2 + 1/4 + 1/8 + 1/16 = 31/16

1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 = 63/32

1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 127/64

1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 = 255/128

1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 = 511/256

And then simplify 511/256 to 1 255 256 \frac {255}{256}

I just thought I'd do it the long way ​if people find it hard to understand =)

Oscar Hildebrandt - 5 years ago
Hung Woei Neoh
May 25, 2016

n = 0 8 1 2 n = 1 + 1 2 + 1 2 2 + + 1 2 8 \displaystyle \sum_{n=0}^8 \dfrac{1}{2^n} = 1 + \dfrac{1}{2} + \dfrac{1}{2^2} + \ldots + \dfrac{1}{2^8}

This is a sum of a geometric progression where a = 1 , r = 1 2 a=1,\;r=\dfrac{1}{2} and n = 9 n=9

Therefore,

S 9 = 1 ( 1 ( 1 2 ) 9 ) 1 1 2 = 1 ( 1 1 512 ) 1 2 = 2 ( 511 512 ) = 1022 512 = 511 256 = 1 255 256 S_9 = \dfrac{1\left(1-\left(\frac{1}{2}\right)^9\right)}{1-\frac{1}{2}}\\ =\dfrac{1\left(1-\frac{1}{512}\right)}{\frac{1}{2}}\\ =2\left(\dfrac{511}{512}\right)\\ =\dfrac{1022}{512}\\ =\dfrac{511}{256}\\ =\boxed{1\dfrac{255}{256}}

That's an excellent solution :)

Oscar Hildebrandt - 5 years ago

Log in to reply

Thanks ¨ \ddot\smile

Hung Woei Neoh - 5 years ago

Nice solution (+1)

Ashish Menon - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...