150 days Streak problem

Algebra Level 2

( 17 + 12 2 4 + 17 12 2 4 ) 4 = ? \left(\sqrt[4]{17 + 12\sqrt{2}} + \sqrt[4]{17 -12\sqrt{2}}\right)^4 = ?


The answer is 64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

In general ( a + b ) 4 = a 4 + 4 a 3 b + 6 a 2 b 2 + 4 a b 3 + b 4 = a 4 + b 4 + 4 a b ( a 2 + b 2 ) + 6 ( a b ) 2 (a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4} = a^{4} + b^{4} + 4ab(a^{2} + b^{2}) + 6(ab)^{2}

( a + b ) 4 = a 4 + b 4 + 4 a b ( ( a + b ) 2 2 a b ) + 6 ( a b ) 2 = a 4 + b 4 + 4 a b ( a + b ) 2 2 ( a b ) 2 . \Longrightarrow (a + b)^{4} = a^{4} + b^{4} + 4ab((a + b)^{2} - 2ab) + 6(ab)^{2} = a^{4} + b^{4} + 4ab(a + b)^{2} - 2(ab)^{2}.

Now with a = 17 + 12 2 4 \large a = \sqrt[4]{17 + 12\sqrt{2}} and b = 17 12 2 4 \large b = \sqrt[4]{17 - 12\sqrt{2}} we have that

a 4 + b 4 = ( 17 + 12 2 ) + ( 17 12 2 ) = 34 a^{4} + b^{4} = (17 + 12\sqrt{2}) + (17 - 12\sqrt{2}) = 34 and a b = 289 144 2 4 = 1. ab = \sqrt[4]{289 - 144*2} = 1.

Thus ( a + b ) 4 = 34 + 4 ( a + b ) 2 2 ( a + b ) 4 4 ( a + b ) 2 32 = 0 (a + b)^{4} = 34 + 4(a + b)^{2} - 2 \Longrightarrow (a + b)^{4} - 4(a + b)^{2} - 32 = 0

( ( a + b ) 2 8 ) ( ( a + b ) 2 + 4 ) = 0 , \Longrightarrow ((a + b)^{2} - 8)((a + b)^{2} + 4) = 0,

so either ( a + b ) 2 = 8 (a + b)^{2} = 8 or ( a + b ) 2 = 4. (a + b)^{2} = -4. Now 12 2 < 12 1.4142 = 16.9704 < 17 , 12\sqrt{2} \lt 12*1.4142 = 16.9704 \lt 17, so b > 0 , b \gt 0, (as is a a ). Thus a + b a + b is real and positive, as will be ( a + b ) 2 . (a + b)^{2}. We can then conclude that ( a + b ) 2 = 8 , (a + b)^{2} = 8, and so ( a + b ) 4 = 8 2 = 64 . (a + b)^{4} = 8^{2} = \boxed{64}.

Let 17 + 12 2 = ( a + b 2 ) 4 = a 4 + 4 a 3 b 2 + 12 a 2 b 2 + 8 a b 3 2 + 4 b 4 \begin{aligned} \text{Let } 17 + 12\sqrt{2} & = \left(a+b\sqrt{2}\right)^4 = a^4 + 4a^3b\sqrt{2} + 12a^2b^2 + 8ab^3\sqrt{2} + 4b^4 \end{aligned}

Equating coefficients on both sides, we have:

{ a 4 + 12 a 2 b 2 + 4 b 4 = 17 4 a 3 b + 8 a b 3 = 12 a = 1 and b = 1 { 17 + 12 2 = ( 2 + 1 ) 4 17 12 2 = ( 2 1 ) 4 \begin{cases} a^4 + 12a^2b^2 + 4b^4 & = 17 \\ 4a^3b + 8ab^3 & = 12 \end{cases} \quad \Rightarrow a = 1 \text{ and } b = 1 \quad \Rightarrow \begin{cases} 17 + 12\sqrt{2} = \left(\sqrt{2}+1\right)^4 \\ 17 - 12\sqrt{2} = \left(\sqrt{2}-1\right)^4 \end{cases}

Therefore,

( 17 + 12 2 4 + 17 12 2 4 ) 4 = ( ( 2 + 1 ) 4 4 + ( 2 1 ) 4 4 ) 4 = ( 2 + 1 + 2 1 ) 4 = ( 2 2 ) 4 = 64 \begin{aligned} \left(\sqrt[4]{17 + 12\sqrt{2}} + \sqrt[4]{17 - 12\sqrt{2}}\right)^4 & = \left(\sqrt[4]{(\sqrt{2}+1)^4} + \sqrt[4]{(\sqrt{2}-1)^4}\right)^4 \\ & = \left(\sqrt{2} + 1 + \sqrt{2} - 1 \right)^4 \\ & = \left(2\sqrt{2}\right)^4 = \boxed{64} \end{aligned}

How did you solved the equations ?

Aditya Sky - 5 years ago

Log in to reply

We note that the sum of coefficients in the LHS = RHS. Therefore, a = b = 1 a = b =1 .

{ ( 1 ) a 4 + 12 a 2 b 2 + 4 b 4 = 17 4 a 3 b + 8 a b 3 = 12 \begin{cases} \color{#D61F06}{(1)}a^4 + \color{#D61F06}{12}a^2b^2 + \color{#D61F06}{4}b^4 & = \color{#D61F06}{17} \\ \color{#D61F06}{4}a^3b + \color{#D61F06}{8}ab^3 & = \color{#D61F06}{12} \end{cases}

Actually, I read the mind of the problem writer. Usually, there are simple integers for a a and b b for 17 + 12 2 4 = ( a + b 2 ) 4 4 = a + b 2 \sqrt [4] {17+12\sqrt{2}} = \sqrt [4] {(a+b\sqrt{2})^4} = a+b\sqrt{2} so that computation will be easy.

Chew-Seong Cheong - 5 years ago

Log in to reply

Hmm.. But is there any way to solve the equations?

I tried to do so but got stuck.

Aditya Sky - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...