Simple test of Convergence.

Calculus Level 4

Evaluate:

k = 1 ( 1 ) k 1 k n = 0 1 2 n k + 1 . \large\ \displaystyle \sum _{ k=1 }^{ \infty }{ \frac { { \left( -1 \right) }^{ k - 1 } }{ k } } \displaystyle \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ 2^nk + 1 } } .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Patrick Corn
Nov 15, 2019

The sum is n = 0 k = 1 1 2 n k + 1 ( 1 ) k 1 k . \sum_{n=0}^\infty \sum_{k=1}^\infty \frac1{2^nk + 1} \frac{(-1)^{k-1}}{k}. Consider how many times a number N N appears as 2 n k . 2^n k. If N = 2 b a N = 2^b a with a a odd, then 1 N + 1 \frac1{N+1} will appear in b + 1 b+1 terms of the sum, when k = a , 2 a , 4 a , , 2 b a k= a, 2a, 4a, \ldots, 2^ba and n = b , b 1 , b 2 , , 0. n= b, b-1, b-2, \ldots, 0. That is, our sum equals N = 1 1 N + 1 2 n k = N ( 1 ) k 1 k = N = 1 1 N + 1 ( 1 a 1 2 a 1 4 a 1 2 b a ) = N = 1 1 N + 1 1 2 b a = N = 1 1 N ( N + 1 ) = 1 \begin{aligned} \sum_{N=1}^\infty \frac1{N+1} \sum_{2^nk = N} \frac{(-1)^{k-1}}{k} &= \sum_{N=1}^{\infty} \frac1{N+1} \left( \frac1{a} - \frac1{2a} - \frac1{4a} - \cdots - \frac1{2^ba} \right) \\ &= \sum_{N=1}^{\infty} \frac1{N+1} \frac1{2^ba} = \sum_{N=1}^{\infty} \frac1{N(N+1)}= \fbox{1} \end{aligned} (the sum telescopes ).

Probably, a comment to the effect that ( 1 ) k + 1 k 1 2 n k + 1 1 2 n k 2 k 1 , n 0 \left|\frac{(-1)^{k+1}}{k} \frac{1}{2^nk + 1}\right| \;\le \; \frac{1}{2^n k^2} \hspace{2cm} k \ge 1\,,\, n \ge 0 so that n = 0 k = 1 ( 1 ) k + 1 k 1 2 n k + 1 < \sum_{n=0}^\infty \sum_{k=1}^\infty \left|\frac{(-1)^{k+1}}{k} \frac{1}{2^nk + 1}\right| < \infty which means (Fubini/Tonelli) that the series is absolutely convergent (and hence that all this reordering and manipulation is valid) would be a good idea.

Mark Hennings - 1 year, 6 months ago

Log in to reply

Agreed, thanks.

Patrick Corn - 1 year, 6 months ago
Mark Hennings
Nov 17, 2019

That is a pretty easy B6!

Patrick Corn - 1 year, 6 months ago
Priyanshu Mishra
Nov 17, 2019

The given sum can be re-written as:

S = k = 1 n = 0 ( 1 ) k 1 k 0 1 x k 2 n d x . \large\ S = \displaystyle \sum _{ k=1 }^{ \infty }{ \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ k - 1 } }{ k } \displaystyle \int _{ 0 }^{ 1 }{ { x }^{ k{ 2 }^{ n } }dx } } } .

By absolute convergence, we are free to permute the integral and the sums:

S = 0 1 d x k = 1 n = 0 ( 1 ) k 1 k x k 2 n = 0 1 d x n = 0 log ( 1 + x 2 n ) . \large\ S = \displaystyle \int _{ 0 }^{ 1 }{ dx\sum _{ k=1 }^{ \infty }{ \displaystyle \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ k-1 } }{ k } { x }^{ { k2 }^{ n } } } } } = \displaystyle -\int _{ 0 }^{ 1 }{ dx \displaystyle \sum _{ n=0 }^{ \infty }{ \log { \left( 1 + { x }^{ { 2 }^{ n } } \right) } } } .

Which evaluates to 1 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...