A geometry problem by Nivedit Jain

Geometry Level 2

cos A sin B sin C + cos B sin A sin C + cos C sin A sin B \frac {\cos A}{\sin B\sin C} + \frac {\cos B}{\sin A \sin C} + \frac {\cos C}{\sin A \sin B}

Find the value of the expression above, where A A , B B and C C are angles of A B C \triangle ABC .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

X = cos A sin B sin C + cos B sin C sin A + cos C sin A sin B For , A = 18 0 B C = cos ( 18 0 B C ) sin B sin C + cos ( 18 0 C A ) sin C sin A + cos ( 18 0 A B ) sin A sin B Note: cos ( 18 0 θ ) = cos θ = cos ( B + C ) sin B sin C cos ( C + A ) sin C sin A cos ( A + B ) sin A sin B = sin B sin C cos B cos C sin B sin C + sin C sin A cos C cos A sin C sin A + sin A sin B cos A cos B sin A sin B = 3 ( cot B cot C + cot C cot A + cot A cot B ) See note: c y c cot A cot B = 1 = 3 1 = 2 \begin{aligned} X & = \frac {\cos A}{\sin B \sin C} + \frac {\cos B}{\sin C \sin A} + \frac {\cos C}{\sin A \sin B} & \small \color{#3D99F6} \text{For }\triangle, \ A = 180^\circ - B - C \\ & = \frac {\cos (180^\circ - B-C)}{\sin B \sin C} + \frac {\cos (180^\circ -C-A)}{\sin C \sin A} + \frac {\cos (180^\circ -A- B)}{\sin A \sin B} & \small \color{#3D99F6} \text{Note: } \cos (180^\circ - \theta) = - \cos \theta \\ & = - \frac {\cos (B+C)}{\sin B \sin C} - \frac {\cos (C+A)}{\sin C \sin A} - \frac {\cos (A+B)}{\sin A \sin B} \\ & = \frac {\sin B \sin C - \cos B \cos C}{\sin B \sin C} + \frac {\sin C \sin A - \cos C \cos A}{\sin C \sin A} + \frac {\sin A \sin B - \cos A \cos B}{\sin A \sin B} \\ & = 3 - ({\color{#3D99F6}\cot B \cot C + \cot C \cot A + \cot A \cot B}) & \small \color{#3D99F6} \text{See note: }\sum_{cyc} \cot A \cot B = 1 \\ & = 3 - {\color{#3D99F6}1} \\ & = \boxed{2} \end{aligned}


Note: For triangle A B C ABC ,

tan A + tan B + tan C = tan A tan B tan C cot B cot C + cot C cot A + cot A cot B = 1 \small \begin{aligned} \tan A + \tan B + \tan C & = \tan A \tan B \tan C \\ \cot B \cot C + \cot C \cot A + \cot A \cot B & = 1 \end{aligned}

Nivedit Jain
Mar 2, 2017

0.5cosecAcosecBcosecC[sin2A+sin2B+sin2c] taking LCM Now 0.5cosecAcosecBcosecC[2sin(A+C)cos(A-C) +2sinBcosB] Sin(A+C)= Sin(180° - B)=sinB taking 2sinB common and cancelling we get cosecAcosecC[cos(A-C) + cos(B)] =cosecAcosecC[ 2cos((C+B-A)/2)cos((A+B-C)/2)] C+B=180°-A A+B=180°-C We get 2cosecAcosecCsinAsinB We get 2 that is the answer ::)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...