Number One Identity

Geometry Level 1

sin θ + sin 2 θ = 1 {\sin}\theta+{\sin}^2\theta= 1

If the above equation is true, find the value of the expression below

cos 2 θ + cos 4 θ . {\cos}^2\theta+{\cos}^4\theta.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Discussions for this problem are now closed

Parth Lohomi
Jan 17, 2015

S i n θ = 1 s i n 2 θ Sin\theta=1-sin^2\theta

S i n θ = c o s 2 θ Sin\theta = cos^2\theta

So

c o s 4 θ cos^4\theta = s i n 2 θ sin^2\theta

c o s 2 θ + c o s 4 θ = s i n θ + s i n 2 θ = 1 cos^2\theta +cos^4\theta = sin\theta + sin^2\theta = 1


Upvote if you are satisfied

Same solution

Roman Frago - 6 years, 4 months ago

also try this problem of trigonometry triangles

Manish Mayank - 6 years, 4 months ago
Vishal S
Jan 17, 2015

Given

sin θ \sin \theta + sin 2 θ \sin^2 \theta =1 ---->(1)

Identity I \Rightarrow sin 2 θ \sin^2 \theta + cos 2 θ \cos^2 \theta =1 ---->(2)

By comparing (1)=(2)

We get sin θ \sin \theta = cos 2 θ \cos^2 \theta

If sin θ \sin \theta = cos 2 θ \cos^2 \theta , then sin 2 θ \sin^2 \theta = cos 4 θ \cos^4 \theta

Therefore cos 2 θ \cos^2 \theta + cos 4 θ \cos^4 \theta = sin θ \sin \theta + sin 2 θ \sin^2 \theta

\Rightarrow cos 2 θ \cos^2 \theta + cos 4 θ \cos^4 \theta = 1 \boxed{1}

This is the same as the first.

Roman Frago - 6 years, 4 months ago
Saanika Gupta
Jan 17, 2015

We know sin^2 theta+cos^2 theta=1 It is given, sin theta+sin^2 theta=1 so sin theta=cos^2 theta to find cos^2 theta+cos^4 theta substitute sin theta in place of cos^2 theta and sin^2 theta in place of cos^4 theta we get sin theta+sin^2 theta=? value is already given as 1 ans is 1

Ebtihal Mohamed
Jan 18, 2015

Anna Anant
Jan 24, 2015

Ans: 1 cos²θ = 1 - sin²θ = 1 - (1 - sin θ) = sin θ cos²θ + cos⁴θ = cos²θ(1 + cos²θ) = sin θ(1 + sin θ) = sin θ + sin²θ = sin θ + (1 - sin θ) = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...