Evaluate the definite integral ∫ 0 4 π ln ( tan x + 1 ) d x . The answer must be a decimal in terms of π . For example, if the calculation result is 2 . 6 5 4 π , then the answer should be 2 . 6 5 4 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This came in some AIEEE , right ?
∫ 0 π / 4 ln ( tan x + 1 ) d x = ∫ 0 π / 4 ( ln ( sin x + cos x ) − ln ( c o s x ) ) ) d x
= ∫ 0 π / 4 ln ( sin x + cos x ) d x − ∫ 0 π / 4 ln ( cos x ) d x
Now we have:
sin x + cos x = 2 ( 2 2 ) ( sin x + cos x )
= 2 ( 2 2 sin x + 2 2 cos x ) = 2 ( cos 4 π sin x + sin 4 π cos x )
= 2 sin ( x + 4 π )
The integral then becomes:
∫ 0 π / 4 ln ( 2 sin ( x + 4 π ) d x − ∫ 0 π / 4 ln cos x d x
= ∫ 0 π / 4 ln 2 d x + ∫ π / 2 π / 4 ln sin u d u − ∫ 0 π / 4 ln cos x d x
Now consider ∫ 0 π / 4 ln cos x d x ; make the substitution x = 2 π − v and rewrite this integral as:
− ∫ π / 2 π / 4 ln sin x d x = ∫ π / 4 π / 2 ln sin x d x .
This cancels, and we are left with ∫ 0 π / 4 ln 2 d x = 8 ln 2 π .
Since we want the answer in terms of π , we can solve 8 ln 2 using a calculator and we get an answer of 0 . 0 8 7 .
Too long. But nice approach.
Problem Loading...
Note Loading...
Set Loading...
Take , I = ∫ 0 π / 4 ln ( 1 + tan ( x ) )
Then, I = ∫ 0 π / 4 ln ( 1 + tan ( 4 π − x ) )
I = ∫ 0 4 π ln ( 1 + tan ( x ) 2 )
I = ∫ 0 4 π ln ( 2 ) − I
I = 8 π ln ( 2 )