Simple Yet Challenging Integral

Calculus Level 3

Evaluate the definite integral 0 π 4 ln ( tan x + 1 ) d x . \displaystyle{\int _{ 0 }^{ \frac{\pi}{4}}{ \ln { (\tan { x+1)\, dx } } } .} The answer must be a decimal in terms of π \pi . For example, if the calculation result is 2.654 π , 2.654\pi, then the answer should be 2.654 2.654 .


The answer is 0.087.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shivang Jindal
Sep 16, 2014

Take , I = 0 π / 4 ln ( 1 + tan ( x ) ) I = \int_{0}^{\pi/4} \ln(1+\tan(x))

Then, I = 0 π / 4 ln ( 1 + tan ( π 4 x ) ) I = \int_{0}^{\pi/4} \ln(1+\tan(\frac{\pi}{4}-x))

I = 0 π 4 ln ( 2 1 + tan ( x ) ) I = \int_{0}^{\frac{\pi}{4}} \ln(\frac{2}{1+\tan(x)})

I = 0 π 4 ln ( 2 ) I I = \int_{0}^{\frac{\pi}{4}} \ln(2) - I

I = π ln ( 2 ) 8 I = \frac{\pi \ln(2)}{8}

This came in some AIEEE , right ?

Arif Ahmed - 6 years, 8 months ago

0 π / 4 ln ( tan x + 1 ) d x = 0 π / 4 ( ln ( sin x + cos x ) ln ( c o s x ) ) ) d x \int _{ 0 }^{ \pi /4 }{ \ln { (\tan { x+1)dx } } } = \int _{ 0 }^{ \pi /4 }{ (\ln { (\sin { x+\cos { x)-\ln { (cos{ x })))dx } } } } }

= 0 π / 4 ln ( sin x + cos x ) d x 0 π / 4 ln ( cos x ) d x =\int _{ 0 }^{ \pi /4 }{ \ln { (\sin { x } +\cos { x)dx } } } -\int _{ 0 }^{ \pi /4 }{ \ln { (\cos { x)dx } } }

Now we have:

sin x + cos x = 2 ( 2 2 ) ( sin x + cos x ) \sin { x } +\cos { x } =\sqrt { 2 } (\frac { \sqrt { 2 } }{ 2 } )(\sin { x } +\cos { x) }

= 2 ( 2 2 sin x + 2 2 cos x ) = 2 ( cos π 4 sin x + sin π 4 cos x ) =\sqrt { 2 } (\frac { \sqrt { 2 } }{ 2 } \sin { x } +\frac { \sqrt { 2 } }{ 2 } \cos { x) } = \sqrt { 2 } (\cos { \frac { \pi }{ 4 } \sin { x } } +\sin { \frac { \pi }{ 4 } } \cos { x) }

= 2 sin ( x + π 4 ) =\sqrt { 2 } \sin { (x+\frac { \pi }{ 4 }) }

The integral then becomes:

0 π / 4 ln ( 2 sin ( x + π 4 ) d x 0 π / 4 ln cos x d x \int _{ 0 }^{ \pi /4 }{ \ln { (\sqrt { 2 } \sin { (x+\frac { \pi }{ 4 } } ) } } dx - \int _{ 0 }^{ \pi /4 }{ \ln { \cos { x } } } dx

= 0 π / 4 ln 2 d x + π / 2 π / 4 ln sin u d u 0 π / 4 ln cos x d x =\int _{ 0 }^{ \pi /4 }{ \ln { \sqrt { 2 } } dx } + \int _{ \pi /2 }^{ \pi /4 }{ \ln { \sin { u } } } du - \int _{ 0 }^{ \pi /4 }{ \ln { \cos { x } } } dx

Now consider 0 π / 4 ln cos x d x \int _{ 0 }^{ \pi /4 }{ \ln { \cos { x } } } dx ; make the substitution x = π 2 v x= \frac { \pi }{ 2 } -v and rewrite this integral as:

π / 2 π / 4 ln sin x d x = π / 4 π / 2 ln sin x d x -\int _{ \pi /2 }^{ \pi /4 }{ \ln { \sin { x } } } dx =\int _{ \pi /4 }^{ \pi /2 }{ \ln { \sin { x } } } dx .

This cancels, and we are left with 0 π / 4 ln 2 d x = ln 2 8 π \int _{ 0 }^{ \pi /4 }{ \ln { \sqrt { 2 } dx } } = \frac { \ln { 2 } }{ 8 } \pi .

Since we want the answer in terms of π , \pi, we can solve ln 2 8 \frac { \ln { 2 } }{ 8 } using a calculator and we get an answer of 0.087. 0.087.

Too long. But nice approach.

Ronak Agarwal - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...