How many ordered tuples of distinct positive integers exist such that where is a positive integer?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Changing the given to common denominator reveals that ( x − y ) ( x − z ) x + ( y − x ) ( y − z ) y + ( z − x ) ( z − y ) z = ( x − y ) ( x − z ) ( y − z ) x ( y − z ) + y ( z − x ) + z ( x − y ) = ( x − y ) ( x − z ) ( y − z ) x y − x z + y z − x y + x z − y z = ( x − y ) ( x − z ) ( y − z ) 0 = 0 . And 0 is not a positive integer.
⇒ There exist exactly zero ordered tuples of distinct positive integers ( x , y , z ) satisfying ( x − y ) ( x − z ) x + ( y − x ) ( y − z ) y + ( z − x ) ( z − y ) z = k where k is a positive integer.