Simplification of a complex fraction

Algebra Level pending

x x + y y + z 2 \frac{\large x}{{\large x} +\dfrac{\large y}{{\large y}+\dfrac{z}{2}}}

Evaluate the expression above for x = 3 x=3 , y = 4 y=4 , and z = 5 z=5 . The answer can be expressed as a b \dfrac ab , where a a and b b are positive coprime integers. Enter 100 a + b 100a+b .


The answer is 3947.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Marvin Kalngan
Jun 19, 2020

x x + y y + z 2 \dfrac{x}{x+\dfrac{y}{y+\dfrac{z}{2}}}

Substitute: x = 3 , y = 4 x=3,y=4 and z = 5 z=5

= 3 3 + 4 4 + 5 2 =\dfrac{3}{3+\dfrac{4}{4+\dfrac{5}{2}}}

= 3 3 + 4 8 + 5 2 =\dfrac{3}{3+\dfrac{4}{\dfrac{8+5}{2}}}

= 3 3 + 4 13 2 =\dfrac{3}{3+\dfrac{4}{\dfrac{13}{2}}}

= 3 3 + 4 1 × 2 13 =\dfrac{3}{3+\dfrac{4}{1}\times \dfrac{2}{13}}

= 3 3 + 8 13 =\dfrac{3}{3+\dfrac{8}{13}}

= 3 39 + 8 13 =\dfrac{3}{\dfrac{39+8}{13}}

= 3 47 13 =\dfrac{3}{\dfrac{47}{13}}

= 3 1 × 13 47 =\dfrac{3}{1} \times \dfrac{13}{47}

= 39 47 = a b =\dfrac{39}{47}=\dfrac{a}{b}

100 a + b = 100 ( 39 ) + 47 = 3947 100a+b=100(39)+47=\text{\boxed{3947}}

Mahdi Raza
Jun 17, 2020

= x x + y y + z 2 = x x + y 2 y + z 2 Take LCM of last fraction = x x + 2 y 2 y + z Flip the fraction = x 2 x y + x z + 2 y 2 y + z Again Take LCM = 2 x y + x z 2 x y + x z + 2 y Flip the fraction = 2 ( 3 ) ( 4 ) + ( 3 ) ( 5 ) 2 ( 3 ) ( 4 ) + ( 3 ) ( 5 ) + 2 ( 4 ) Put in the values = 39 47 \begin{aligned} &= \dfrac{x}{x + \dfrac{y}{y + \dfrac{z}{2}}} \\ \\ &= \dfrac{x}{x + \dfrac{y}{\dfrac{\blue{2y + z}}{2}}} &\blue{\text{Take LCM of last fraction}} \\ \\ &= \dfrac{x}{x + \blue{\dfrac{2y}{2y + z}}} &\blue{\text{Flip the fraction}} \\ \\ &= \dfrac{x}{\blue{\dfrac{2xy + xz + 2y}{2y + z}}} &\blue{\text{Again Take LCM}} \\ \\ &= \dfrac{2xy + xz}{2xy + xz + 2y} &\blue{\text{Flip the fraction}} \\ \\ &= \dfrac{2(3)(4) + (3)(5)}{2(3)(4) + (3)(5) + 2(4)} &\blue{\text{Put in the values}} \\ \\ &= \dfrac{39}{47} \end{aligned}

Answer is 100 ( 39 ) + 47 100(39) + 47 : 3947 \boxed{3947}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...