Simplify 2016 and 2015 factorial!

Algebra Level 1

201 6 2016 2016 ! × 2016 ! × 2016 ! × × 2016 ! 2016 times × 2015 ! × 2015 ! × 2015 ! × × 2015 ! 2016 times \dfrac{2016^{2016}}{\underbrace{2016!\times2016!\times2016!\times\cdots\times2016!}_{2016 \text{ times}}}\times\underbrace{2015!\times2015!\times2015!\times\cdots\times2015!}_{2016 \text{ times}}

Simplify the expression above.

Notation : ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Novril Razenda
Jul 8, 2016

Relevant wiki: Factorials Problem Solving - Basic

201 6 2016 2016 ! × 2016 ! × 2016 ! × × 2016 ! 2016 times × 2015 ! × 2015 ! × 2015 ! × × 2015 ! 2016 times \large\dfrac{2016^{2016}}{\underbrace{2016!\times2016!\times2016!\times\cdots\times2016!}_{2016 \text{ times}}}\underbrace{\times2015!\times2015!\times2015!\times\cdots\times2015!}_{2016 \text{ times}}

If we imply 2016 ! 2015 ! × 2016 \large\ 2016!\implies2015!\times2016 So that the expression becomes: 201 6 2016 2015 ! × 2015 ! × 2015 ! × × 2015 ! × 2015 ! 2016 times × 2016 × 2016 × 2016 × × 2016 × 2016 2016 times × 2015 ! × 2015 ! × 2015 ! × × 2015 ! 2016 times \large\implies\dfrac{2016^{2016}}{\underbrace{2015!\times2015!\times2015!\times\cdots\times2015!\times2015!}_{2016 \text{ times}}\times\underbrace{2016\times2016\times2016\times\cdots\times2016\times2016}_{2016 \text{ times}}}\underbrace{\times2015!\times2015!\times2015!\times\cdots\times2015!}_{2016 \text{ times}}

Now we can eliminate: 2015 ! \boxed{2015! } finally, we can get a simplest expression: 201 6 2016 2016 × 2016 × 2016 × × 2016 2016 times = 201 6 2016 201 6 2016 = 1 \large\implies\dfrac{2016^{2016}}{\underbrace{2016\times2016\times2016\times\cdots\times2016}_{2016 \text{ times}}} =\dfrac{2016^{2016}}{2016^{2016}} =\boxed{1}

Relevant wiki: Factorials Problem Solving - Basic

201 6 2016 2016 ! × 2016 ! × 2016 ! × × 2016 ! 2016 times × 2015 ! × 2015 ! × 2015 ! × × 2015 ! 2016 times \Rightarrow \dfrac{\color{#D61F06}{2016^{2016}}}{\underbrace{2016!\times2016!\times2016!\times\cdots\times2016!}_{2016 \text{ times}}}\times\underbrace{\color{#3D99F6}{2015!\times2015!\times2015!\times\cdots\times2015!}}_{2016 \text{ times}}

201 6 2016 201 6 2016 × 2015 ! 2016 × 2015 ! 2016 = 1 \implies\dfrac{\color{#D61F06}{2016^{2016}}}{\color{#D61F06}{2016^{2016}}×\color{#3D99F6}{2015!^{2016}}}×\color{#3D99F6}{2015!^{2016}}=\color{#69047E}{\boxed{1}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...