Simplify

Algebra Level 4

[ X ] + i = 1 1000 { X + i } 1000 \large[X]+\displaystyle \sum_{i=1}^ {1000}\frac{\{X+i\}}{1000}

Assumptions:

[ A ] \left [ A \right ] =the greatest integer function of A A

{ A } \{ A \} =the fractional part of A A

1000 + [ X ] 1000+[X] { X } \{X\} [ X ] [X] 1000 + X 1000+{X} X X 1000 1000

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rachit Shukla
Apr 10, 2015

[ X ] + i = 1 1000 { X + i } 1000 [X]+\displaystyle \sum_{i=1}^ {1000}\frac{\{X+i\}}{1000}

As i i is an integer,

\Rightarrow [ X ] + { X } 1000 i = 1 1000 i 0 [X]+\frac{\{X\}}{1000}\displaystyle \sum_{i=1}^ {1000}i^0

\Rightarrow [ X ] + { X } 1000 1000 [X]+\frac{\{X\}}{1000}1000

\Rightarrow [ X ] + { X } [X]+{\{X\}}

\Rightarrow Ans= X X ¨ \ddot\smile

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...