Terminating Both Algorithms

Algebra Level 3

1 + x + x 2 + x 3 + 1 + 2 x + 3 x 2 + 4 x 3 + \dfrac{1+x+x^2+x^3+\cdots}{1+2x+3x^2+4x^3+\cdots }

For x < 1 |x| < 1 , find the closed form of the expression above.

1 + x 1+x 1 1 1 x 1-x 1 x \frac1x 0 0 None of these choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the expression be f ( x ) f(x) , then we have:

f ( x ) = 1 + x + x 2 + x 3 + . . . 1 + 2 x + 3 x 2 + 4 x 3 + . . . = 1 + x + x 2 + x 3 + . . . d d x ( 1 + x + x 2 + x 3 + . . . ) = 1 1 x d d x ( 1 1 x ) = 1 1 x 1 ( 1 x ) 2 = ( 1 x ) 2 1 x = 1 x \begin{aligned} f(x) & = \frac{1+x+x^2+x^3+...}{1+2x+3x^2+4x^3+...} = \frac{1+x+x^2+x^3+...}{\frac{d}{dx}(1+x+x^2+x^3+...)} \\ & = \frac{\frac{1}{1-x}}{\frac{d}{dx}\left(\frac{1}{1-x}\right)} = \frac{\frac{1}{1-x}}{\frac{1}{(1-x)^2}} = \frac{(1-x)^2}{1-x} = \boxed{1-x} \end{aligned}

Deserve 2 up votes sir!

Deepak Kumar - 5 years, 5 months ago

Could there have been an answer to this problem if x > 1 |x| > 1 ?

Tapas Mazumdar - 4 years, 9 months ago

Log in to reply

Good question. Superficially, it has none. But I cannot be sure.

Chew-Seong Cheong - 4 years, 9 months ago

Wolfram Alpha says no ( see here ).

Chew-Seong Cheong - 4 years, 9 months ago

But according to Stolz–Cesàro theorem the limit is 0. wolfram Alpha only mentions the solution of x < 1 |x| < 1 .

Chew-Seong Cheong - 4 years, 9 months ago

Log in to reply

Okay, I got it. Thank you very much!

Tapas Mazumdar - 4 years, 9 months ago
Sahil Bansal
Jan 6, 2016

R e q u i r e d v a l u e , S = 1 + x + x 2 + x 3 + . . . 1 + 2 x + 3 x 2 + 4 x 3 + . . . T h e d e n o m i n a t o r o f S i s a n a r i t h m e t i c g e o m e t r i c s e r i e s . L e t y = 1 + 2 x + 3 x 2 + 4 x 3 + . . . x y = x + 2 x 2 + 3 x 3 + . . . S u b t r a c t i n g t h e t w o , w e g e t y ( 1 x ) = 1 + ( 2 1 ) x + ( 3 2 ) x 2 + ( 4 3 ) x 3 + . . . y = 1 + x + x 2 + x 3 + . . . 1 x H e n c e , S = 1 + x + x 2 + x 3 + . . . 1 + x + x 2 + x 3 + . . . 1 x = 1 x . Required\quad value,\quad S=\cfrac { 1+x+{ x }^{ 2 }{ +x }^{ 3 }+... }{ 1+2x+{ 3x }^{ 2 }{ +4x }^{ 3 }+... } \\ \\ The\quad denominator\quad of\quad S\quad is\quad an\quad arithmetic-geometric\quad series.\quad \\ \\ Let\quad y=1+2x+{ 3x }^{ 2 }{ +4x }^{ 3 }+...\\ \\ \quad \Rightarrow xy=\quad \quad x+{ 2x }^{ 2 }{ +3x }^{ 3 }+...\\ \\ Subtracting\quad the\quad two,\quad we\quad get\\ y(1-x)=1+(2-1)x+(3-2){ x }^{ 2 }+(4-3){ x }^{ 3 }+...\\ \\ \Rightarrow y=\cfrac { 1+x+{ x }^{ 2 }{ +x }^{ 3 }+... }{ 1-x } \\ \\ Hence,\quad S=\cfrac { 1+x+{ x }^{ 2 }{ +x }^{ 3 }+... }{ \cfrac { 1+x+{ x }^{ 2 }{ +x }^{ 3 }+... }{ 1-x } } \quad =\quad 1-x.\\ \\

Tapas Mazumdar
Sep 18, 2016

Let

1 + x + x 2 + x 3 + = S 1 1+x+x^{2}+x^{3}+\cdots = S_{1}

1 + 2 x + 3 x 2 + 4 x 3 + = S 2 1+2x+3x^{2}+4x^{3}+\cdots = S_{2}

Now,

S 2 = 1 + 2 x + 3 x 2 + 4 x 3 + S 2 x = x + 2 x 2 + 3 x 3 + 4 x 4 + ________________________________________ S 2 ( 1 x ) = 1 + x + x 2 + x 3 + ________________________________________ S 2 ( 1 x ) = S 1 S 2 = S 1 ( 1 x ) ~~~~~~ S_{2} = 1+2x+3x^{2}+4x^{3}+\cdots \\ - S_{2}x = ~~~~~~~~~x+2x^{2}+3x^{3}+4x^{4}+\cdots \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ S_{2}(1-x) = 1+x+x^{2}+x^{3}+\cdots \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ \implies S_{2}(1-x) = S_{1} \\ \implies S_{2} = \dfrac{S_{1}}{(1-x)} \\

Hence,

S 1 S 2 S 1 S 1 / ( 1 x ) ( 1 x ) \dfrac{S_{1}}{S_{2}} \iff \dfrac{S_{1}}{{S_{1}}/{(1-x)}} \implies \boxed{(1-x)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...