1 + 2 x + 3 x 2 + 4 x 3 + ⋯ 1 + x + x 2 + x 3 + ⋯
For ∣ x ∣ < 1 , find the closed form of the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Deserve 2 up votes sir!
Could there have been an answer to this problem if ∣ x ∣ > 1 ?
Log in to reply
Good question. Superficially, it has none. But I cannot be sure.
Wolfram Alpha says no ( see here ).
But according to Stolz–Cesàro theorem the limit is 0. wolfram Alpha only mentions the solution of ∣ x ∣ < 1 .
R e q u i r e d v a l u e , S = 1 + 2 x + 3 x 2 + 4 x 3 + . . . 1 + x + x 2 + x 3 + . . . T h e d e n o m i n a t o r o f S i s a n a r i t h m e t i c − g e o m e t r i c s e r i e s . L e t y = 1 + 2 x + 3 x 2 + 4 x 3 + . . . ⇒ x y = x + 2 x 2 + 3 x 3 + . . . S u b t r a c t i n g t h e t w o , w e g e t y ( 1 − x ) = 1 + ( 2 − 1 ) x + ( 3 − 2 ) x 2 + ( 4 − 3 ) x 3 + . . . ⇒ y = 1 − x 1 + x + x 2 + x 3 + . . . H e n c e , S = 1 − x 1 + x + x 2 + x 3 + . . . 1 + x + x 2 + x 3 + . . . = 1 − x .
Let
1 + x + x 2 + x 3 + ⋯ = S 1
1 + 2 x + 3 x 2 + 4 x 3 + ⋯ = S 2
Now,
S 2 = 1 + 2 x + 3 x 2 + 4 x 3 + ⋯ − S 2 x = x + 2 x 2 + 3 x 3 + 4 x 4 + ⋯ ________________________________________ S 2 ( 1 − x ) = 1 + x + x 2 + x 3 + ⋯ ________________________________________ ⟹ S 2 ( 1 − x ) = S 1 ⟹ S 2 = ( 1 − x ) S 1
Hence,
S 2 S 1 ⟺ S 1 / ( 1 − x ) S 1 ⟹ ( 1 − x )
Problem Loading...
Note Loading...
Set Loading...
Let the expression be f ( x ) , then we have:
f ( x ) = 1 + 2 x + 3 x 2 + 4 x 3 + . . . 1 + x + x 2 + x 3 + . . . = d x d ( 1 + x + x 2 + x 3 + . . . ) 1 + x + x 2 + x 3 + . . . = d x d ( 1 − x 1 ) 1 − x 1 = ( 1 − x ) 2 1 1 − x 1 = 1 − x ( 1 − x ) 2 = 1 − x