Simplify an expression (HARD)

Algebra Level pending

x 4 ( x + y ) 2 x 4 y 2 ( x + y ) 4 y 4 + 4 y 4 ( x + y ) 2 ( x + y ) 4 + y 2 ( x + y ) 2 \frac{{{x^4}{{\left( {x + y} \right)}^2} - {x^4}{y^2}}}{{{{\left( {x + y} \right)}^4} - {y^4}}} + \frac{{4{y^4}{{\left( {x + y} \right)}^2}}}{{{{\left( {x + y} \right)}^4} + {y^2}{{\left( {x + y} \right)}^2}}}

Simplify the expression above, where x x and y y are real numbers and x { 0 y 2 y x \ne \begin{cases} 0 \\ -y \\ -2y \end{cases} .

( x + y ) 4 ( x y ) 4 ( x y ) 4 \frac{{{{\left( {x + y} \right)}^4} - {{\left( {x - y} \right)}^4}}}{{{{\left( {x - y} \right)}^4}}} ( x + y ) 2 + y 2 {\left( {x + y} \right)^2} + {y^2} ( x y ) 2 + y 2 {\left( {x - y} \right)^2} + {y^2} ( x + y ) 4 {\left( {x + y} \right)^4} ( x + y ) 2 + y 2 ( x y ) 2 + y 2 \frac{{{{\left( {x + y} \right)}^2} + {y^2}}}{{{{\left( {x - y} \right)}^2} + {y^2}}} 1 ( ( x + y ) 2 y 2 ) ( ( x + y ) 2 + y 2 ) \left( {{{\left( {x + y} \right)}^2} - {y^2}} \right)\left( {{{\left( {x + y} \right)}^2} + {y^2}} \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 29, 2020

X = x 4 ( x + y ) 2 x 4 y 2 ( x + y ) 4 y 4 + 4 y 4 ( x + y ) 2 ( x + y ) 4 + y 2 ( x + y ) 2 = x 4 ( ( x + y ) 2 y 2 ) ( ( x + y ) 2 + y 2 ) ( ( x + y ) 2 y 2 ) + 4 y 4 ( x + y ) 2 ( x + y ) 2 ( ( x + y ) 2 + y 2 ) = x 4 + 4 y 4 ( x + y ) 2 + y 2 By Sophie Germain identity = ( ( x + y ) 2 + y 2 ) ( ( x y ) 2 + y 2 ) ( x + y ) 2 + y 2 = ( x y ) 2 + y 2 \begin{aligned} X & = \frac {x^4(x+y)^2-x^4y^2}{(x+y)^4-y^4} + \frac {4y^4(x+y)^2}{(x+y)^4+y^2(x+y)^2} \\ & = \frac {x^4 \cancel{\left((x+y)^2-y^2\right)}}{\left((x+y)^2+y^2\right) \cancel{\left((x+y)^2-y^2\right)}} + \frac {4y^4 \cancel{(x+y)^2}}{\cancel{(x+y)^2} \left((x+y)^2+y^2\right)} \\ & = \frac {\blue{x^4+4y^4}}{(x+y)^2+y^2} & \small \blue{\text{By Sophie Germain identity}} \\ & = \frac {\blue{\left((x+y)^2+y^2\right)\cancel{\left((x-y)^2+y^2\right)}}}{\cancel{(x+y)^2+y^2}} \\ & = \boxed{(x-y)^2+y^2} \end{aligned}


Reference: Sophie Germain identity

Hey Chew-Seong, how do you get those crossed-terms to appear in LATEX? Thanks!

tom engelsman - 1 year, 4 months ago

Log in to reply

First you have to declare \require{cancel}. Then you can use it as \cancel{E=mc^2} E = m c 2 \cancel{E=mc^2} .

Chew-Seong Cheong - 1 year, 4 months ago
Tom Engelsman
Jan 29, 2020

The above expression can be factorized according to:

x 4 ( ( x + y ) 2 y 2 ) ( ( x + y ) 2 + y 2 ) ( ( x + y ) 2 y 2 ) + 4 y 2 ( x + y ) 2 ( x + y ) 2 ( ( x + y ) 2 + y 2 ) \frac{x^4((x+y)^2 - y^2)}{((x+y)^2 + y^2)((x+y)^2 - y^2)} + \frac{4y^2(x+y)^2}{(x+y)^2((x+y)^2 + y^2)} ;

or x 4 ( x + y ) 2 + y 2 + 4 y 4 ( x + y ) 2 + y 2 ; \frac{x^4}{(x+y)^2 + y^2} + \frac{4y^4}{(x+y)^2 + y^2};

or x 4 + 4 y 4 ( x + y ) 2 + y 2 ; \frac{x^4 + 4y^4}{(x+y)^2 + y^2};

or ( x 2 + 2 x y + 2 y 2 ) ( x 2 2 x y + 2 y 2 ) ( x + y ) 2 + y 2 ; \frac{(x^2 + 2xy + 2y^2)(x^2 - 2xy + 2y^2)}{(x+y)^2 + y^2};

or ( ( x + y ) 2 + y 2 ) ( ( x y ) 2 + y 2 ) ( x + y ) 2 + y 2 ; \frac{((x+y)^2 + y^2)((x-y)^2 + y^2)}{(x+y)^2 + y^2};

or ( x y ) 2 + y 2 . \boxed{(x-y)^2 + y^2}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...