Simplify and Substitute

Calculus Level 5

0 d x x [ x 2 + ( 1 + 2 2 ) x + 1 ] [ 1 x + x 2 x 3 + + x 50 ] \large \int_0^{\infty} \frac{dx}{\sqrt{x}\left[x^2 + \left(1 + 2\sqrt{2}\right)x + 1\right]\left[1 - x + x^2 - x^3 + \cdots + x^{50}\right]}

The value of the above integral can be expressed in the form π ( a b c ) \pi\left(a\sqrt{b} - c\right) , where a a , b b , and c c are coprime positive integers and b b is square-free. Find ( a + 1 ) ( b + 3 ) ( c + 5 ) (a + 1)(b + 3)(c + 5) .

Bonus: Generalize for integrals of the form

0 d x x [ x 2 + a x + 1 ] [ 1 x + x 2 x 3 + + ( x ) n ] \int_0^{\infty} \frac{dx}{\sqrt{x}\left[x^2 + ax + 1\right]\left[1 - x + x^2 - x^3 + \cdots + (- x)^n\right]}


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 24, 2017

I ( a ) = 0 d x x ( x 2 + a x + 1 ) ( 1 x + x 2 + + ( x ) n ) = 0 1 + x x ( x 2 + a x + 1 ) ( 1 + ( 1 ) n x n + 1 ) d x . . . ( 1 ) \begin{aligned} I(a) & = \int_0^\infty \frac {dx}{\sqrt x \left(x^2+ax+1\right)\color{#3D99F6}\left(1-x+x^2+\cdots+(-x)^n\right)} \\ & = \int_0^\infty \frac {\color{#3D99F6}1+x}{\sqrt x \left(x^2+ax+1\right)\color{#3D99F6}\left(1+(-1)^nx^{n+1}\right)} dx & ...(1) \end{aligned}

Using the identity 0 f ( x ) d x = 0 f ( 1 x ) x 2 d x \displaystyle \int_0^\infty f(x) \ dx = \int_0^\infty \frac {f\left(\frac 1x\right)}{x^2} \ dx ,

I ( a ) = 0 1 + 1 x x 2 x ( 1 x 2 + a x + 1 ) ( 1 + 1 ( 1 ) n x n + 1 ) d x = 0 ( 1 + x ) ( 1 ) n x n + 1 x ( x 2 + a x + 1 ) ( 1 + ( 1 ) n x n + 1 ) d x . . . ( 2 ) \begin{aligned} I(a) & = \int_0^\infty \frac {1+\frac 1x}{\frac {x^2}{\sqrt x} \left(\frac 1{x^2}+ \frac ax +1 \right) \left(1+\frac 1{(-1)^nx^{n+1}}\right)} dx \\ & = \int_0^\infty \frac {(1+x)(-1)^nx^{n+1}}{\sqrt x \left(x^2+ax+1\right)\left(1+(-1)^nx^{n+1}\right)} dx & ...(2) \end{aligned}

From ( ( 1 ) + ( 2 ) ) / 2 ((1)+(2))/2 :

I ( a ) = 1 2 0 1 + x x ( x 2 + a x + 1 ) d x Let u 2 = x 2 u d u = d x = 0 u 2 + 1 u 4 + a u 2 + 1 d u = 0 u 2 + 1 ( u 2 + a a 2 4 2 ) ( u 2 + a + a 2 4 2 ) d u = 0 u 2 + 1 ( u 2 + α ) ( u 2 + β ) d u By partial fractions = 1 β α 0 ( 1 α u 2 + α 1 β u 2 + β ) d u = π 2 ( β α ) ( 1 α α 1 β β ) Note that β α = a 2 4 = π 2 a 2 4 ( β α β α + α β α β ) and α β = 1 = π a 2 4 ( β α ) = π a 2 4 ( β α ) 2 = π a 2 4 β 2 α β + α = π a 2 a 2 4 = π a + 2 \begin{aligned} I(a) & = \frac 12 \int_0^\infty \frac {1+x}{\sqrt x \left(x^2+ax+1\right)} dx & \small \color{#3D99F6} \text{Let }u^2 = x \implies 2u \ du = dx \\ & = \int_0^\infty \frac {u^2+1}{u^4+au^2+1} \ du \\ & = \int_0^\infty \frac {u^2+1}{\left(u^2+{\color{#3D99F6}\frac {a-\sqrt{a^2-4}}2}\right)\left(u^2+{\color{#D61F06}\frac {a+\sqrt{a^2-4}}2}\right)} \ du \\ & = \int_0^\infty \frac {u^2+1}{\left(u^2+{\color{#3D99F6}\alpha}\right)\left(u^2+{\color{#D61F06}\beta}\right)} \ du & \small \color{#3D99F6} \text{By partial fractions} \\ & = \frac 1{\beta - \alpha} \int_0^\infty \left(\frac {1-\alpha}{u^2+\alpha} - \frac {1-\beta}{u^2+\beta}\right) du \\ & = \frac {\pi}{2(\beta - \alpha)} \left(\frac {1-\alpha}{\sqrt \alpha} - \frac {1-\beta}{\sqrt \beta}\right) & \small \color{#3D99F6} \text{Note that } \beta - \alpha = \sqrt{a^2-4} \\ & = \frac {\pi}{2\sqrt{a^2-4}} \left(\frac { \sqrt \beta-\alpha \sqrt \beta - \sqrt \alpha +\sqrt \alpha \beta}{\sqrt {\alpha \beta}} \right) & \small \color{#3D99F6} \text{and } \alpha \beta = 1 \\ & = \frac {\pi}{\sqrt{a^2-4}} \left(\sqrt \beta- \sqrt \alpha \right) \\ & = \frac {\pi}{\sqrt{a^2-4}} \sqrt{\left(\sqrt \beta- \sqrt \alpha \right)^2} \\ & = \frac {\pi}{\sqrt{a^2-4}} \sqrt{\beta- 2\sqrt {\alpha \beta} + \alpha} \\ & = \frac {\pi \sqrt{a-2}}{\sqrt{a^2-4}} \\ & = \frac \pi{\sqrt{a+2}} \end{aligned}

I ( 1 + 2 2 ) = π 1 + 2 2 + 2 = π 3 + 2 2 = π 1 + 2 = π ( 2 1 ) \implies I\left(1+2\sqrt 2\right) = \dfrac \pi{\sqrt{1+2\sqrt 2+2}} = \dfrac \pi{\sqrt{3+2\sqrt 2}} = \dfrac \pi{1+\sqrt 2} = \pi\left(\sqrt 2-1\right)

( a + 1 ) ( b + 3 ) ( c + 5 ) = ( 1 + 1 ) ( 2 + 3 ) ( 1 + 5 ) = 60 \implies (a+1)(b+3)(c+5) = (1+1)(2+3)(1+5) = \boxed{60}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...