Simplify Before Subbing

Calculus Level 1

Evaluate:

π 6 π 3 cot ( x ) sec 2 ( x ) cot ( x ) + 1 d x \large \displaystyle\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cot(x)\sec^2(x)}{\cot(x) + 1}\, dx

ln ( 2 ) \ln(2) 1 2 ln ( 2 ) \frac{1}{2}\ln(2) 1 2 ln ( 3 ) \frac{1}{2}\ln(3) 1 2 \frac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Let the integral be I I , then:

I = π 6 π 3 cot x sec 2 x cot x + 1 d x × tan x tan x = π 6 π 3 sec 2 x 1 + tan x d x Let t = tan x d t = sec 2 x d x = 1 3 3 1 1 + t d t = ln ( 1 + t ) 1 3 3 = ln ( 1 + 3 1 + 1 3 ) = ln 3 = 1 2 ln 3 \begin{aligned} I & = \int_\frac{\pi}{6}^{\frac{\pi}{3}} \frac{\cot x \sec^2 x}{\cot x +1 }dx \quad \quad \small \color{#3D99F6}{\times \frac{\tan x}{\tan x}} \\ & = \int_\frac{\pi}{6}^{\frac{\pi}{3}} \frac{\sec^2 x}{1 + \tan x }dx \quad \quad \small \color{#3D99F6}{\text{Let } t = \tan x \quad \Rightarrow dt = \sec^2 x \space dx } \\ & = \int_{\frac 1{\sqrt 3}}^{\sqrt{ 3}} \frac{1}{1 + t }dt \\ & = \ln (1+t)\bigg|_\frac{1}{\sqrt{3}}^{\sqrt{3}} = \ln \left(\frac{1+\sqrt{3}}{1+\frac{1}{\sqrt{3}}}\right) = \ln \sqrt{3} = \boxed{\frac{1}{2}\ln 3} \end{aligned}

the boundary of the 3rd row should be tan(pi/6) to tan(pi/3), not arctan(x), nice solution tho

達夫 邱 - 2 years, 5 months ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 2 years, 5 months ago

brilliant! is your motivation is 'to only work with tan x \tan x and sec x \sec x ' ?

Bostang Palaguna - 5 months, 2 weeks ago

Log in to reply

Yes, tan x \tan x and sec x \sec x are flexible.

Chew-Seong Cheong - 5 months, 2 weeks ago
Laurent Shorts
Mar 31, 2016

I don't like cot or sec, so I rewrite everything:

cot ( x ) sec 2 ( x ) cot ( x ) + 1 = 1 sin ( x ) cos ( x ) cos ( x ) sin ( x ) + 1 = 1 cos ( x ) cos ( x ) + sin ( x ) \dfrac{\cot(x)\sec^{2}(x)}{\cot(x)+1}=\dfrac{\,\,\,\frac{1}{\sin(x)\cos(x)}\,\,\,}{\frac{\cos(x)}{\sin(x)}+1}=\dfrac{\,\,\,\frac{1}{\cos(x)}\,\,\,}{\cos(x)+\sin(x)}

= 1 cos ( x ) ( cos ( x ) + sin ( x ) ) =\dfrac{1}{\cos(x)\Bigl(\cos(x)+\sin(x)\Bigr)}

To integrate, it's better to have a sum of simplier fractions:

1 cos ( x ) ( cos ( x ) + sin ( x ) ) = sin ( x ) cos ( x ) + cos ( x ) sin ( x ) cos ( x ) + sin ( x ) \dfrac{1}{\cos(x)\Bigl(\cos(x)+\sin(x)\Bigr)}=\dfrac{\sin(x)}{\cos(x)}+\dfrac{\cos(x)-\sin(x)}{\cos(x)+\sin(x)}

That was a good idea as we have now:

sin ( x ) cos ( x ) + cos ( x ) sin ( x ) cos ( x ) + sin ( x ) = cos ( x ) cos ( x ) + ( cos ( x ) + sin ( x ) ) cos ( x ) + sin ( x ) \dfrac{\sin(x)}{\cos(x)}+\dfrac{\cos(x)-\sin(x)}{\cos(x)+\sin(x)}=-\dfrac{\cos'(x)}{\cos(x)}+\dfrac{\bigl(\cos(x)+\sin(x)\bigr)'}{\cos(x)+\sin(x)}

After integrating, we have:

ln ( cos ( x ) ) + ln ( cos ( x ) + sin ( x ) ) = ln ( cos ( x ) + sin ( x ) cos ( x ) ) -\ln\left(\cos(x)\right)+\ln\Bigl(\cos(x)+\sin(x)\Bigr)=\ln\Bigl(\dfrac{\cos(x)+\sin(x)}{\cos(x)}\Bigr) = ln ( 1 + tan ( x ) ) =\ln\Bigl(1+\tan(x)\Bigr)

Which evaluates to:

ln ( 1 + 3 ) ln ( 1 + 1 3 ) = ln ( 1 + 3 ( 3 + 1 ) / 3 ) = ln ( 3 ) = 1 2 ln ( 3 ) \ln\Bigl(1+\sqrt{3}\Bigr)-\ln\Bigl(1+\frac{1}{\sqrt{3}}\Bigr)=\ln\Bigl(\dfrac{1+\sqrt{3}}{(\sqrt{3}+1)/\sqrt{3}}\Bigr)=\ln\Bigl(\sqrt{3}\Bigr)=\frac{1}{2}\ln\Bigl(3\Bigr) .

I like it! Breaking things down into constituent sines and cosines makes a problem easier sometimes.

Andrew Ellinor - 5 years, 2 months ago
Andrew Ellinor
Oct 6, 2015

First, begin by multiplying the integrand by tan ( x ) tan ( x ) \frac{\tan(x)}{\tan(x)} . This transforms the integrand from cot ( x ) sec 2 ( x ) cot ( x ) + 1 to sec 2 ( x ) 1 + tan ( x ) . \frac{\cot(x)\sec^2(x)}{\cot(x) + 1} \hspace{1cm} \text{ to } \hspace{1cm} \frac{\sec^2(x)}{1 + \tan(x)}.

Now we use the appropriate substitution, u = 1 + tan ( x ) u = 1 + \tan(x) , thus transforming the integral into d u u \int \frac{du}{u}

Integrating and back-substituting gives us ln ( 1 + tan ( x ) ) π 6 π 3 = ln ( 1 + 3 ) ln ( 1 + 3 3 ) = 1 2 ln ( 3 ) \ln(1 + \tan(x)) \Big|_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \ln\left(1 + \sqrt{3}\right) - \ln\left(1 + \frac{\sqrt{3}}{3}\right) = \frac{1}{2}\ln(3)

Joe Potillor
Dec 1, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...