Let x , y and z be positive real numbers that satisfy
2 lo g x ( 2 y ) = 2 lo g 2 x ( 4 z ) = lo g 2 x 4 ( 8 y z ) = 0
If the value of x y 5 z can be expressed in the form 2 p / q 1 , where p and q are relatively prime positive integers, find p + q .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Step 1: Let n = 2 lo g x ( 2 y ) = 2 lo g 2 x ( 4 z ) = lo g 2 x 4 ( 8 y z ) = 0
Step 2: Convert each of the expressions to an exponential for our simplification
Expression 1: n = 2 lo g x ( 2 y ) ⟹ x n / 2 = 2 y
Expression 2: n = 2 lo g 2 x ( 4 z ) ⟹ ( 2 x ) n / 2 = 4 z
Expression 3: n = lo g 2 x 4 ( 8 y z ) ⟹ ( 2 x 4 ) n = 8 y z [Note: E1 × E2 = E3 ]
Step 3: Thus as E1 × E2 = E3
⟹ Products of E1 × E2 = E3
⟹ 2 n / 2 ⋅ x n = 2 n x 4 n ⟹ x 3 n = 2 − n / 2 ⟹ x = 2 − 1 / 6
Step 4: Lets get back to the question :)
We have substituted the "expressions" and raised it to the required power.
x y 5 z = 2 − 1 / 6 × ( x 5 n / 2 ⋅ 2 − 5 ) × ( 2 n / 2 ⋅ x n / 2 ⋅ 2 − 2 ) For easiness of simplification I have separated the bases of powers
x y 5 z = 2 − 4 3 / 6 × x 3 n × 2 n / 2 Notice a similarity with the above orange expression ∴ this is = 1
Step 5: Find the value of p + q
Hence: x y 5 z = 2 − 4 3 / 6 = 2 4 3 / 6 1 and by substitution p + q = 4 9
Nice solution. Loved it
Let 2 lo g x ( 2 y ) = 2 lo g 2 x ( 4 x ) = lo g 2 x 4 ( 8 y z ) = 2 k . Using a log base of 2, we have:
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ lo g 2 x lo g 2 ( 2 y ) = k lo g 2 ( 2 x ) lo g 2 ( 4 z ) = k lo g 2 ( 2 x 4 ) lo g 2 ( 8 y z ) = 2 k ⟹ lo g 2 ( 2 y ) = k lo g 2 x ⟹ lo g 2 ( 4 z ) = k lo g 2 ( 2 x ) ⟹ lo g 2 ( 2 y ) + lo g 2 ( 4 z ) = 2 k lo g 2 ( 2 x 4 ) . . . ( 1 ) . . . ( 2 ) . . . ( 3 )
From ( 1 ) + ( 2 ) = ( 3 ) :
k lo g 2 x + k lo g 2 ( 2 x ) lo g 2 x + lo g 2 ( 2 x ) lo g 2 ( 2 x 2 ) 2 x 2 x 6 ⟹ x = 2 k lo g 2 ( 2 x 4 ) = 2 lo g 2 ( 2 x 4 ) = lo g 2 ( 4 x 8 ) = 4 x 8 = 2 1 = 2 6 1 1 Since k = 0
From ( 1 ) ÷ ( 2 ) :
lo g 2 ( 4 z ) lo g 2 ( 2 y ) 5 lo g 2 ( 2 y ) 5 lo g 2 ( 2 y ) + lo g 2 ( 4 z ) lo g 2 ( 2 5 y 5 ⋅ 2 2 z ) 2 7 y 5 z y 5 z ⟹ x y 5 z = 1 + lo g 2 x lo g 2 x = 1 − 6 1 − 6 1 = − 5 1 = − lo g 2 ( 4 z ) = 0 = 0 = 1 = 2 7 1 = 2 7 + 6 1 1 = 2 6 4 3 1 Since lo g 2 x = − 6 1
Therefore, p + q = 4 3 + 6 = 4 9 .
Problem Loading...
Note Loading...
Set Loading...
Let's convert the logarithms to base 2:
lo g 2 ( x ) 2 lo g 2 ( 2 y ) = lo g 2 ( 2 x ) 2 lo g 2 ( 4 z ) = lo g 2 ( 2 x 4 ) lo g 2 ( 8 y z ) = 0 lo g 2 ( x ) 2 lo g 2 ( 2 ) + 2 lo g 2 ( y ) = lo g 2 ( 2 ) + lo g 2 ( x ) 2 lo g 2 ( 4 ) + 2 lo g 2 ( 4 ) = lo g 2 ( 2 ) + 4 lo g 2 ( x ) lo g 2 ( 8 ) + lo g 2 ( y ) + lo g 2 ( z ) = 0
Let a = lo g 2 ( x ) , b = lo g 2 ( y ) , c = lo g 2 ( z ) . Then:
a 2 + 2 b = 1 + a 4 + 2 c = 1 + 4 a 3 + b + c = 0 , meaning b = − 1
Now we've a system with two equations:
{ ( 1 + a ) ⋅ 2 ( 1 + b ) = 2 ( 2 + c ) ⋅ a ( 1 + 4 a ) ⋅ 2 ( 1 + b ) = ( 3 + b + c ) ⋅ a { 1 + a + b + a b = 2 a + a c 2 + 8 a + 2 b + 8 a b = 3 a + a b + a c { a c = 1 − a + b + a b a c = 2 + 5 a + 2 b + 7 a b 2 + 5 a + 2 b + 7 a b = 1 − a + b + a b 1 + 6 a + b + 6 a b = 0 ( 1 + 6 a ) ⋅ ( 1 + b ) = 0
Since b = − 1 , we know a = − 6 1 :
− 6 1 ⋅ c = 1 + 6 1 + b − 6 1 ⋅ b c = − 7 − 5 b
Now we can get the answer:
x ⋅ y 5 ⋅ z = 2 a + 5 b + c = 2 − 6 1 + 5 b − 7 − 5 b = 2 − 6 1 − 7 = 2 − 6 4 3 = 2 6 4 3 1
p = 4 3 , q = 6 ⇒ p + q = 4 9