Simplify it!

Algebra Level 3

1 2 ! + 2 3 ! + 3 4 ! + . . . . . . + n ( n + 1 ) ! \frac { 1 }{ 2! } +\frac { 2 }{ 3! } +\frac { 3 }{ 4! } +......+\frac { n }{ (n+1)! }

(n-1)! 0 (n+1)! 1+1/(n+1)! 1-(n-1)! n! 1-1/(n+1)! 1-(n+1)!

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Bala Vidyadharan
Nov 18, 2015

Simple just use the concept of telescopic sum.

Let the given expression be S

S= 1 2 ! + 2 3 ! + . . . . . . . . . + n ( n + 1 ) ! 2 1 2 ! + 3 1 3 ! + . . . . + n + 1 1 ( n + 1 ) ! 2 2 ! 1 2 ! + 3 3 ! 1 3 ! + . . . . + n + 1 ( n + 1 ) ( n ) ! 1 ( n + 1 ) ! A l l t h e m i d d l e t e r m s g e t s c a n c e l l e d e x c e p t 1 1 ( n + 1 ) ! \frac { 1 }{ 2! } +\frac { 2 }{ 3! } +.........+\frac { n }{ (n+1)! } \\ \\ \frac { 2-1 }{ 2! } +\frac { 3-1 }{ 3! } +....+\frac { n+1-1 }{ (n+1)!\\ } \\ \frac { 2 }{ 2! } -\frac { 1 }{ 2! } +\frac { 3 }{ 3! } -\frac { 1 }{ 3! } +....+\frac { n+1 }{ (n+1)(n)! } \quad -\quad \frac { 1 }{ (n+1)! } \\ \\ All\quad the\quad middle\quad terms\quad gets\quad cancelled\quad except\\ \\ 1-\frac { 1 }{ (n+1)! }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...