Simplify this Gamma monster!

Calculus Level 3

Simplify this monster.

33554432 Γ ( 13 12 ) 2 Γ ( 17 12 ) 2 Γ ( 7 4 ) 8 225 π 4 Γ ( 7 12 ) 2 Γ ( 11 12 ) 2 3 \sqrt[3]{\frac{33554432\ \Gamma\left(\frac {13}{12}\right)^2\Gamma\left(\frac {17}{12}\right)^2\Gamma\left(\frac 74 \right)^8}{225\pi^4 \ \Gamma\left(\frac 7{12}\right)^2\Gamma\left(\frac {11}{12}\right)^2}}


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X = 33554432 Γ ( 13 12 ) 2 Γ ( 17 12 ) 2 Γ ( 7 4 ) 8 225 π 4 Γ ( 7 12 ) 2 Γ ( 11 12 ) 2 3 = 33554432 Γ ( 7 12 + 1 2 ) 2 Γ ( 11 12 + 1 2 ) 2 Γ ( 7 4 ) 8 225 π 4 Γ ( 7 12 ) 2 Γ ( 11 12 ) 2 3 By Legendre duplication formula = 8388608 Γ ( 7 6 ) 2 Γ ( 11 6 ) 2 Γ ( 7 4 ) 8 225 π 2 Γ ( 7 12 ) 4 Γ ( 11 12 ) 4 3 By Γ ( 1 + z ) = z Γ ( z ) = 524288 Γ ( 1 6 ) 2 Γ ( 5 6 ) 2 Γ ( 7 4 ) 8 729 π 2 Γ ( 1 4 + 1 3 ) 4 Γ ( 1 4 + 2 3 ) 4 3 By triplication formula = 32768 ( 2 π ) 2 Γ ( 1 4 ) 4 Γ ( 7 4 ) 8 243 π 6 Γ ( 3 4 ) 4 3 By Γ ( z ) Γ ( 1 z ) = π sin ( π z ) = 131072 Γ ( 1 4 ) 4 ( 3 4 Γ ( 3 4 ) ) 8 243 π 4 Γ ( 3 4 ) 4 3 = 54 π 4 Γ ( 1 4 ) 4 Γ ( 3 4 ) 4 3 = 54 π 4 ( π sin π 4 ) 4 3 = 216 3 = 6 \begin{aligned} X & = \sqrt[3]{\frac{33554432\ \Gamma\left(\frac {13}{12}\right)^2\Gamma\left(\frac {17}{12}\right)^2\Gamma\left(\frac 74 \right)^8}{225\pi^4 \ \Gamma\left(\frac 7{12}\right)^2\Gamma\left(\frac {11}{12}\right)^2}} \\ & = \sqrt[3]{\frac{33554432\ \blue{\Gamma\left(\frac 7{12}+\frac 12 \right)^2\Gamma\left(\frac {11}{12}+\frac 12 \right)^2} \Gamma \left( \frac 74 \right)^8}{225\pi^4 \ \Gamma\left(\frac 7{12}\right)^2\Gamma\left(\frac {11}{12}\right)^2}} & \small \blue{\text{By Legendre duplication formula}} \\ & = \sqrt[3]{\frac{\blue{8388608\ \Gamma\left(\frac 76\right)^2\Gamma\left(\frac {11}6 \right)^2} \Gamma \left( \frac 74 \right)^8}{225\pi^{\blue 2} \ \Gamma\left(\frac 7{12}\right)^{\blue 4}\Gamma\left(\frac {11}{12}\right)^{\blue 4}}} & \small \blue{\text{By }\Gamma (1+z) = z \Gamma(z)} \\ & = \sqrt[3]{\frac{\blue{524288\ \Gamma\left(\frac 16\right)^2\Gamma\left(\frac 56 \right)^2} \Gamma \left( \frac 74 \right)^8}{\blue{729}\pi^2 \ \red{\Gamma\left(\frac 14 + \frac 13 \right)^4\Gamma\left(\frac 14 + \frac 23 \right)^4}}} & \small \red{\text{By triplication formula}} \\ & = \sqrt[3]{\frac{\red{32768}\ \blue{(2\pi)^2} \red{\Gamma\left(\frac 14\right)^4} \Gamma \left( \frac 74 \right)^8}{\red{243}\pi^{\red 6} \ \red{\Gamma\left(\frac 34\right)^4}}} & \small \blue{\text{By }\Gamma(z)\Gamma(1-z) = \frac \pi{\sin (\pi z)}} \\ & = \sqrt[3]{\frac{\blue{131072}\ \Gamma\left(\frac 14\right)^4 \left(\frac 34\Gamma \left( \frac 34 \right) \right)^8}{243 \pi^{\blue 4} \ \Gamma\left(\frac 34\right)^4}} \\ & = \sqrt[3]{\frac {54}{\pi^4}\Gamma \left(\frac 14\right)^4\Gamma \left(\frac 34\right)^4} \\ & = \sqrt[3]{\frac {54}{\pi^4} \left(\frac \pi{\sin \frac \pi 4}\right)^4} = \sqrt[3]{216} = \boxed 6 \end{aligned}


References:

  • Gamma function
  • Legendre duplication formula : Γ ( 2 z ) = 2 2 z 1 2 2 π Γ ( z ) Γ ( z + 1 2 ) \Gamma (2z) = \dfrac {2^{2z-\frac 12}}{\sqrt{2\pi}}\Gamma (z) \Gamma \left(z+\frac 12\right)
  • Triplication formula (equation 51) : Γ ( 3 z ) = 3 3 z 1 2 2 π Γ ( z ) Γ ( z + 1 3 ) Γ ( z + 2 3 ) \Gamma (3z) = \dfrac {3^{3z-\frac 12}}{\sqrt{2\pi}}\Gamma (z) \Gamma \left(z+\frac 13\right) \Gamma \left(z+\frac 23\right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...