What do we get after simplifying:
( x 4 + x 2 y 2 + y 4 ) ( x − y ) x 6 − y 6
Inspiration: Real Algebra 2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thanks for recommending my problem this is also a very nice one
I used the same solution
Have you tried Real Algebra (1)?
Log in to reply
I don't remember, do you have it's link?
Log in to reply
https://brilliant.org/problems/real-algebra/?ref_id=1590610
Nice problem! By the way, how do you cancel terms in LaTeX? Thanks!
Log in to reply
use \cancel{} and \bcancel{}
hey,mahdi please state that the x =!y
( x 4 + x 2 y 2 + y 4 ) ( x − y ) x 6 − y 6 = ( ( x 2 + y 2 ) 2 − x 2 y 2 ) ( x − y ) ( x 3 − y 3 ) ( x 3 + y 3 ) = ( x 2 + x y + y 2 ) ( x 2 − x y + y 2 ) ( x − y ) ( x − y ) ( x 2 + x y + y 2 ) ( x + y ) ( x 2 − x y + y 2 ) = x + y
I think you have a typo in the numerator of the first term. It’s x 6 − y 6
Log in to reply
Thanks, I have amended it
Multiply and divide by x+y we will directly get x+y
Problem Loading...
Note Loading...
Set Loading...
Let a = x 2 and b = y 2
( x 4 + x 2 y 2 + y 4 ) ( x − y ) x 6 − y 6 = ( a 2 + a b + b 2 ) ( x − y ) a 3 − b 3 = ( a 2 + a b + b 2 ) ( x − y ) ( a − b ) ( a 2 + a b + b 2 ) = x − y x 2 − y 2 = x − y ( x + y ) ( x − y ) = x + y