Simplifying Large Powers

Algebra Level 1

Simplify

8 10 + 4 10 8 4 + 4 11 . \sqrt{\dfrac{8^{10}+4^{10}}{8^4+4^{11}}}.


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Anuj Shikarkhane
Aug 11, 2016

8 10 + 4 10 8 4 + 4 11 \large\sqrt{\dfrac{8^{10}+4^{10}}{8^4+4^{11}}}

= 2 30 + 2 20 2 12 + 2 22 \large\sqrt{\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}}

= 2 12 ( 2 18 + 2 8 ) 2 12 ( 1 + 2 10 ) \large\sqrt{\dfrac{2^{12}(2^{18}+2^8)}{2^{12}(1+2^{10})}}

= 2 8 ( 2 10 + 1 ) 2 10 + 1 \large\sqrt{\dfrac{2^8(2^{10}+1)}{2^{10}+1}}

= 2 8 \large\sqrt{2^8}

= 2 4 2^4

= 16 \boxed{16}

Chew-Seong Cheong
Dec 16, 2017

8 10 + 4 10 8 4 + 4 11 = 2 30 + 2 20 2 12 + 2 22 = 2 20 ( 2 10 + 1 ) 2 12 ( 1 + 2 10 ) = 2 20 2 12 = 2 8 = 2 4 = 16 \sqrt{\frac {8^{10}+4^{10}}{8^4+4^{11}}} = \sqrt{\frac {2^{30}+2^{20}}{2^{12}+2^{22}}} =\sqrt{\frac {2^{20}\left(2^{10}+1\right)}{2^{12}\left( 1 +2^{10}\right)}} = \sqrt{\frac {2^{20}}{2^{12}}} = \sqrt{2^8} = 2^4 = \boxed{16}

Robert DeLisle
Dec 17, 2017

An alternative to breaking down all terms to powers of 2 is to rewrite the powers of 8 as

8 10 = 2 10 4 10 = 4 5 4 10 = 4 15 8^{10} = 2^{10} 4^{10} = 4^5 4^{10} = 4^{15}

8 4 = 2 4 4 4 = 4 2 4 4 = 4 6 8^{4} = 2^{4} 4^{4} = 4^{2}4^{4} = 4^{6}

Then

8 10 + 4 10 8 4 + 4 11 = 4 15 + 4 10 4 6 + 4 11 = 4 10 ( 4 5 + 1 ) 4 6 ( 1 + 4 5 ) = 4 10 4 6 = 4 4 = 4 2 = 16 \sqrt{ \frac{8^{10} + 4^{10}} {8^{4} + 4^{11}} } =\sqrt{ \frac{4^{15} + 4^{10}} {4^{6} + 4^{11}} } =\sqrt{ \frac{4^{10}(4^{5}+1)} {4^{6} (1+ 4^{5})} } =\sqrt{ \frac{4^{10}} {4^{6}} } =\sqrt{ 4^{4} } =4^{2} = 16

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...