Simplifying roots 3

Algebra Level 3

8 + 72 3 + 585 64 3 3 + 8 + 72 3 585 64 3 3 = ? \large \sqrt[3]{8 + \frac{72 \sqrt3 +585}{64 \sqrt3}} + \sqrt[3]{8 + \frac{72 \sqrt3 - 585}{64 \sqrt3}} = \ ?

Give your answer to 3 decimal places.

This problem is part of this set


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ikkyu San
Oct 23, 2015

8 + 72 3 + 585 64 3 3 = 8 + 9 8 + 585 64 3 3 = 73 8 + 585 64 3 3 \Rightarrow\sqrt[3]{8+\dfrac{72\sqrt3+585}{64\sqrt3}}=\sqrt[3]{8+\dfrac98+\dfrac{585}{64\sqrt3}}=\sqrt[3]{\dfrac{73}8+\dfrac{585}{64\sqrt3}}

8 + 72 3 585 64 3 3 = 8 + 9 8 585 64 3 3 = 73 8 585 64 3 3 \Rightarrow\sqrt[3]{8+\dfrac{72\sqrt3-585}{64\sqrt3}}=\sqrt[3]{8+\dfrac98-\dfrac{585}{64\sqrt3}}=\sqrt[3]{\dfrac{73}8-\dfrac{585}{64\sqrt3}}

Let A = 73 8 + 585 64 3 3 \color{#D61F06}{A=\sqrt[3]{\dfrac{73}8+\dfrac{585}{64\sqrt3}}} , B = 73 8 585 64 3 3 \color{#3D99F6}{B=\sqrt[3]{\dfrac{73}8-\dfrac{585}{64\sqrt3}}} and S = A + B = 73 8 + 585 64 3 3 + 73 8 585 64 3 3 \color{#20A900}S=\color{#D61F06}A+\color{#3D99F6}B=\color{#D61F06}{\sqrt[3]{\dfrac{73}8+\dfrac{585}{64\sqrt3}}}+\color{#3D99F6}{\sqrt[3]{\dfrac{73}8-\dfrac{585}{64\sqrt3}}}

Now,

S 3 = A 3 + B 3 + 3 A B ( A + B ) = A 3 + B 3 + 3 A B S ( ) \color{#20A900}S^3=A^3+B^3+3AB(\color{#D61F06}A+\color{#3D99F6}B)=\color{#302B94}{A^3+B^3}+\color{magenta}{3AB}\color{#20A900}S\Rightarrow(*)

Thus,

A 3 + B 3 = ( 73 8 + 585 64 3 3 ) 3 + ( 73 8 585 64 3 3 ) 3 = 73 4 \color{#302B94}{A^3+B^3}=\left(\color{#D61F06}{\sqrt[3]{\dfrac{73}8+\dfrac{585}{64\sqrt3}}}\right)^3+\left(\color{#3D99F6}{\sqrt[3]{\dfrac{73}8-\dfrac{585}{64\sqrt3}}}\right)^3=\color{#302B94}{\dfrac{73}4}

3 A B = 3 ( 73 8 + 585 64 3 3 ) ( 73 8 585 64 3 3 ) = 3 ( 73 8 ) 2 ( 585 64 3 ) 2 3 = 3 5329 64 114075 4096 3 = 3 226981 4096 3 = 3 ( 61 16 ) = 183 16 \begin{aligned}\color{magenta}{3AB}=&3\left(\color{#D61F06}{\sqrt[3]{\dfrac{73}8+\dfrac{585}{64\sqrt3}}}\right)\left(\color{#3D99F6}{\sqrt[3]{\dfrac{73}8-\dfrac{585}{64\sqrt3}}}\right)=3\sqrt[3]{\left(\dfrac{73}8\right)^2-\left(\dfrac{585}{64\sqrt3}\right)^2}\\=&3\sqrt[3]{\dfrac{5329}{64}-\dfrac{114075}{4096}}=3\sqrt[3]{\dfrac{226981}{4096}}=3\left(\dfrac{61}{16}\right)=\color{magenta}{\dfrac{183}{16}}\end{aligned}

Instead A 3 + B 3 \color{#302B94}{A^3+B^3} with 73 4 \color{#302B94}{\dfrac{73}4} and 3 A B \color{magenta}{3AB} with 183 16 \color{magenta}{\dfrac{183}{16}} in equation ( ) (*)

S 3 = 73 4 + ( 183 16 ) S 16 S 3 = 292 + 183 S 16 S 3 183 S 292 = 0 ( S 4 ) ( 16 S 2 + 64 S + 73 ) = 0 \begin{aligned}\color{#20A900}S^3=&\ \color{#302B94}{\dfrac{73}4}+\left(\color{magenta}{\dfrac{183}{16}}\right)\color{#20A900}S\\16\color{#20A900}S^3=&\ 292+183\color{#20A900}S\\16\color{#20A900}S^3-183\color{#20A900}S-292=&\ 0\\(\color{#20A900}S-4)(16\color{#20A900}S^2+64\color{#20A900}S+73)=&\ 0\end{aligned}

From equation

S 4 = 0 S = 4 \Rightarrow\color{#20A900}S-4=0\Rightarrow\color{#20A900}{S=4}

16 S 2 + 64 S + 73 = 0 Δ = 6 4 2 4 ( 16 ) ( 73 ) = 576 < 0 [Complex Solution] \Rightarrow16\color{#20A900}S^2+64\color{#20A900}S+73=0\Rightarrow\Delta=64^2-4(16)(73)=-576<0\quad\text{[Complex Solution]}

Hence, 8 + 72 3 + 585 64 3 3 + 8 + 72 3 585 64 3 3 = 4 \sqrt[3]{8+\dfrac{72\sqrt3+585}{64\sqrt3}}+\sqrt[3]{8+\dfrac{72\sqrt3-585}{64\sqrt3}}=\boxed4

wow this is great!

Pi Han Goh - 5 years, 7 months ago

Elegant solution my friend

Yellow Tomato - 5 years, 7 months ago
Mohammad Khaza
Jul 7, 2017

i don't have much time to do these types of math

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...