Simplify the expression

Algebra Level 1

x 2 25 x 2 + 10 x + 25 \large \dfrac{x^2-25}{x^2+10x+25}

Simplify the expression above.

x + 5 x+5 x 5 x-5 x 5 x + 5 \frac{x-5}{x+5} 1 x + 5 \frac{1}{x+5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Alex Harman
May 18, 2016

Factor the numerator, ( x 5 ) ( x + 5 ) x 2 + 10 x + 25 \frac{(x-5)(x+5)}{x^2+10x+25} . Now factor the denominator, ( x 5 ) ( x + 5 ) ( x + 5 ) ( x + 5 ) \frac{(x-5)(x+5)}{(x+5)(x+5)} and finally cancel out like terms, ( x 5 ) ( x + 5 ) \frac{(x-5)}{(x+5)} × × ( x + 5 ) ( x + 5 ) \frac{(x+5)}{(x+5)} = = ( x 5 ) ( x + 5 ) \frac{(x-5)}{(x+5)} × ( 1 ) = ×(1)= ( x 5 ) ( x + 5 ) \frac{(x-5)}{(x+5)} .

We will use two formulas. ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2 = a^2 + 2ab +b^2 a 2 b 2 = ( a + b ) ( a b ) a^2 - b^2 = (a+b)(a-b)

By applying these, x 2 25 x 2 + 10 x + 25 = x 2 5 2 x 2 + 2 10 x + 5 2 = ( x + 5 ) ( x 5 ) ( x + 5 ) 2 = x 5 x + 5 \frac {x^{2} - 25}{x^{2} + 10x + 25} = \frac {x^{2} - 5^2}{x^2 + 2 \cdot 10x + 5^2 } = \frac {(x+5)(x-5)}{(x+5)^2} = \frac {x-5}{x+5}

x 2 25 x 2 + 10 x + 25 = x 2 5 2 ( x + 5 ) ( x + 5 ) = ( x + 5 ) ( x 5 ) ( x + 5 ) ( x + 5 ) = \dfrac{x^2-25}{x^2+10x+25}=\dfrac{x^2-5^2}{(x+5)(x+5)}=\dfrac{(x+5)(x-5)}{(x+5)(x+5)}= x 5 x + 5 \color{#D61F06}\boxed{\dfrac{x-5}{x+5}}

Ashish Menon
May 31, 2016

x 2 25 x 2 + 10 x + 25 = ( x + 5 ) ( x 5 ) ( x + 5 ) ( x + 5 ) = ( x 5 ) ( x + 5 ) \dfrac{x^2 - 25}{x^2 + 10x + 25} = \dfrac{(x + 5)(x - 5)}{(x + 5)(x + 5)} = \color{#69047E}{\boxed{\dfrac{(x - 5)}{(x + 5)}}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...