Simply Awsome!

Algebra Level 4

If,

i = 1 200 ( 1 + 1 i 2 + 1 ( 1 + i ) 2 ) = A B \sum _{ i=1 }^{ 200 }{ \sqrt { \left( 1+\frac { 1 }{ { i }^{ 2 } } +\frac { 1 }{ { \left( 1+i \right) }^{ 2 } } \right) } } =\frac { A }{ B }

Find: A + B A+B where A A and B B are coprime positive integers.

Dedicated to all my 200+ followers

Thanks a lot for encouraging me to improve!


The answer is 40601.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Aug 31, 2015

1 + 1 i 2 + 1 ( 1 + i ) 2 = 1 + 1 i 2 + 1 ( 1 + i ) 2 + 2 i ( i + 1 ) 2 i ( i + 1 ) = 1 + 2 ( 1 i 1 i + 1 ) + ( 1 i 1 i + 1 ) 2 = ( 1 + 1 i 1 i + 1 ) 2 i = 1 200 ( 1 + 1 i 2 + 1 ( 1 + i ) 2 ) = i = 1 200 ( 1 + 1 i 1 i + 1 ) = 201 1 201 = 40400 201 1+\frac { 1 }{ { i }^{ 2 } } +\frac { 1 }{ { \left( 1+i \right) }^{ 2 } } =1+\frac { 1 }{ { i }^{ 2 } } +\frac { 1 }{ { \left( 1+i \right) }^{ 2 } } +\frac { 2 }{ i\left( i+1 \right) } -\frac { 2 }{ i\left( i+1 \right) } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =1+2\left( \frac { 1 }{ i } -\frac { 1 }{ i+1 } \right) +{ \left( \frac { 1 }{ i } -\frac { 1 }{ i+1 } \right) }^{ 2 }\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad ={ \left( 1+\frac { 1 }{ i } -\frac { 1 }{ i+1 } \right) }^{ 2 }\\ \therefore \sum _{ i=1 }^{ 200 }{ \sqrt { \left( 1+\frac { 1 }{ { i }^{ 2 } } +\frac { 1 }{ { \left( 1+i \right) }^{ 2 } } \right) } } =\sum _{ i=1 }^{ 200 }{ \left( 1+\frac { 1 }{ i } -\frac { 1 }{ i+1 } \right) } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =201-\frac { 1 }{ 201 } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac { 40400 }{ 201 }

I did it in exactly same way.

Surya Prakash - 5 years, 9 months ago

Log in to reply

Nice. It is a very easy problem. I wanted more people to solve my problems. That's y i posted it.

Aditya Kumar - 5 years, 9 months ago

Something similar I had posted - A Complicated Logarithmic Limit! :P

Satyajit Mohanty - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...