Simply Simplify!!

Algebra Level 2

If x = 4 2 2 + 1 x=\frac{4\sqrt{2}}{\sqrt{2}+1}

Then the value of

1 2 ( x + 2 x 2 + x + 2 2 x 2 2 ) \frac{1}{\sqrt{2}}(\frac{x+2}{x-2}+\frac{x+2\sqrt{2}}{x-2\sqrt{2}})

can be simplified to a number of the form k \sqrt{k} where k k is a positive integer.Find k k

For more problems ,click here .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 15, 2014

1 2 ( x + 2 x 2 + x + 2 2 x 2 2 ) = k x + 2 x 2 + x + 2 2 x 2 2 = 2 k \dfrac {1}{ \sqrt{2} } \left( \dfrac {x+2} {x-2} + \dfrac {x + 2 \sqrt{2} } {x - 2 \sqrt{2} } \right) = \sqrt{k} \quad \Rightarrow \dfrac {x+2} {x-2} + \dfrac {x + 2 \sqrt{2} } {x - 2 \sqrt{2} } = \sqrt{2k}

Substitute in the LHS of the above equation x = 4 2 2 + 1 x = \frac {4 \sqrt{2}} {\sqrt{2} +1}

4 2 2 + 1 + 2 4 2 2 + 1 2 + 4 2 2 + 1 + 2 2 4 2 2 + 1 2 2 \dfrac { \frac {4 \sqrt{2}} {\sqrt{2} +1} +2} { \frac {4 \sqrt{2}} {\sqrt{2} +1} -2} + \dfrac { \frac {4 \sqrt{2}} {\sqrt{2} +1} + 2 \sqrt{2} } {\frac {4 \sqrt{2}} {\sqrt{2} +1} - 2 \sqrt{2} }

= 4 2 + 2 2 + 2 4 2 2 2 2 + 4 2 + 4 + 2 2 4 2 4 2 2 = \dfrac { 4 \sqrt{2} + 2 \sqrt{2} + 2 } { 4 \sqrt{2} - 2 \sqrt{2} - 2} + \dfrac { 4 \sqrt{2} + 4 + 2 \sqrt{2} } { 4 \sqrt{2} - 4 - 2 \sqrt{2}}

= 6 2 + 2 2 2 2 + 6 2 + 4 2 2 4 = \dfrac { 6 \sqrt{2} + 2 } { 2 \sqrt{2} - 2} + \dfrac { 6 \sqrt{2} + 4 } { 2 \sqrt{2} - 4 }

= 3 2 + 1 2 1 + 3 2 + 2 2 2 = \dfrac { 3 \sqrt{2} + 1 } { \sqrt{2} - 1} + \dfrac { 3 \sqrt{2} + 2 } { \sqrt{2} - 2 }

= ( 3 2 + 1 ) ( 2 2 ) + ( 3 2 + 2 ) ( 2 1 ) ( 2 1 ) ( 2 2 ) = \dfrac { (3 \sqrt{2} + 1) ( \sqrt{2} - 2 ) + ( 3 \sqrt{2} + 2 ) ( \sqrt{2} - 1 ) } { (\sqrt{2} - 1) ( \sqrt{2} - 2 ) }

= 6 5 2 2 + 6 2 2 2 3 2 + 2 = \dfrac { 6 - 5 \sqrt{2} - 2 + 6 - \sqrt{2} - 2 } { 2 - 3 \sqrt{2} + 2 }

= 8 6 2 4 3 2 = 2 = \dfrac { 8 - 6 \sqrt{2} } { 4 - 3 \sqrt{2} } = 2

2 k = 2 k = 2 \Rightarrow \sqrt{2k} = 2 \quad \Rightarrow k = \boxed {2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...