Simultaneous Linear Equations

Given the linear system:

2 x 1 + x 2 x 3 + x 4 3 x 5 = 7 , x 1 + 2 x 3 x 4 + x 5 = 2 , 2 x 2 x 3 + x 4 x 5 = 5 , 3 x 1 + x 2 4 x 3 + 5 x 5 = 6 , x 1 x 2 x 3 x 4 + x 5 = 3. \begin{aligned} 2x_1+x_2-x_3+x_4-3x_5&=7,\\ x_1+2x_3-x_4+x_5&=2,\\ -2x_2-x_3+x_4-x_5&=-5,\\ 3x_1+x_2-4x_3+5x_5&=6,\\ x_1-x_2-x_3-x_4+x_5&=3. \end{aligned}

Find the value of Ψ \lfloor\Psi\rceil where

Ψ = 1000 x 1 + x 2 + x 3 + x 4 + x 5 . \Psi=1000\left|x_1+x_2+x_3+x_4+x_5\right|.


The answer is 1433.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Apr 1, 2021

Employing matrices here, we can write:

[ 2 1 1 1 3 1 0 2 1 1 0 2 1 1 1 3 1 4 0 5 1 1 1 1 1 ] [ x 1 x 2 x 3 x 4 x 5 ] = [ 7 2 5 6 3 ] \begin{bmatrix} 2 & 1 & -1 & 1 & -3 \\ 1 & 0 & 2 & -1 & 1 \\ 0 & -2 & -1 & 1 & -1 \\ 3 & 1 & -4 & 0 & 5 \\ 1 & -1 & -1 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 7 \\ 2 \\ -5 \\ 6 \\ 3 \end{bmatrix}

which has the unique solution:

[ x 1 x 2 x 3 x 4 x 5 ] = [ 328 / 171 336 / 171 169 / 171 546 / 171 194 / 171 ] \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 328/171 \\ 336/171 \\ -169/171 \\ -546/171 \\ -194/171 \end{bmatrix}

and Ψ = 1000 328 + 336 169 546 194 171 = 1432.748 Ψ = 1433 . \Psi = 1000|\frac{328+336-169-546-194}{171}| = 1432.748 \Rightarrow \lceil \Psi \rfloor =\boxed{1433}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...