0 ∫ ∞ sin ( λ 2 x 2 + x 2 1 ) d x
This integral can be expressed as
B λ π A sin ( C λ + D π )
Find the sum A + B + C + D , assuming that λ > 0 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
... assuming that λ > 0 ...otherwise D = − 4 .
Log in to reply
That is true, thanks for pointing this out. I've edited the question accordingly.
Substitute x by λ x 1 and let I = ∫ 0 ∞ sin ( λ 2 x 2 + x 2 1 ) d x we get,
λ I = ∫ 0 ∞ sin ( λ 2 x 2 + x 2 1 ) d x − 1
So, by adding the 2 integrals above(after multiplying the first one by λ ), we arrive at,
2 λ I = ∫ 0 ∞ sin ( λ 2 x 2 + x 2 1 ) d ( λ x − x 1 ) = ∫ 0 ∞ sin ( ( λ x − x 1 ) 2 + 2 λ ) d ( λ x − x 1 )
Let x = λ x − x 1 , we have
2 λ I = ∫ − ∞ ∞ sin ( x 2 + 2 λ ) d x = ∫ − ∞ ∞ sin ( x 2 ) cos ( 2 λ ) + cos ( x 2 ) sin ( 2 λ ) d x
Now,
∫ − ∞ ∞ sin ( x 2 ) d x = ∫ − ∞ ∞ cos ( x 2 ) d x = 2 π
2 λ I = π sin ( 2 λ + 4 π )
I = 2 λ π sin ( 2 λ + 4 π )
So, A = 2 1 , B = C = 2 , D = 4
A + B + C + D = 0 . 5 + 2 + 2 + 4 = 8 . 5
Brilliant..how to approach this types of questions..which books are laid this all concept
Log in to reply
I don't know if there's a book on this, but I cam up with this myself after staring and some thoughts.
Problem Loading...
Note Loading...
Set Loading...
Substituting u = λ x , this integral becomes
λ 1 0 ∫ ∞ sin ( λ ( u 2 + u − 2 ) ) d u = λ 1 0 ∫ ∞ sin ( λ ( ( u − u − 1 ) 2 + 2 ) ) d u = 2 λ 1 − ∞ ∫ ∞ sin ( λ ( ( u − u − 1 ) 2 + 2 ) ) d u
By Glasser's Master Theorem, this integral can be reduced to
2 λ 1 − ∞ ∫ ∞ sin ( λ ( u 2 + 2 ) ) d u = 2 λ 1 − ∞ ∫ ∞ sin ( λ u 2 + 2 λ ) ) d u = λ 1 0 ∫ ∞ sin ( λ u 2 ) cos ( 2 λ ) + cos ( λ u 2 ) sin ( 2 λ ) d u
We then make a final substitution t = λ u to get
λ 1 0 ∫ ∞ sin ( t 2 ) cos ( 2 λ ) + cos ( t 2 ) sin ( 2 λ ) d u
Using the Fresnel integral, which states that 0 ∫ ∞ sin ( x 2 ) d x = 0 ∫ ∞ cos ( x 2 ) d x = 8 π , we can simplify this integral to
2 λ 2 π ( sin ( 2 λ ) + cos ( 2 λ ) ) = 2 λ π sin ( 2 λ + 4 π )