Sin and squares?

Calculus Level 5

0 sin ( λ 2 x 2 + 1 x 2 ) d x \int\limits_{0}^{\infty}\sin \left(\lambda^2x^2+\frac 1{x^2}\right)dx

This integral can be expressed as

π A B λ sin ( C λ + π D ) \frac{\pi^A}{B\lambda}\sin \left(C\lambda+\frac{\pi}{D}\right)

Find the sum A + B + C + D A+B+C+D , assuming that λ > 0 \lambda>0 .


The answer is 8.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Wesley Low
Aug 18, 2019

Substituting u = λ x u=\sqrt{\lambda}x , this integral becomes

1 λ 0 sin ( λ ( u 2 + u 2 ) ) d u = 1 λ 0 sin ( λ ( ( u u 1 ) 2 + 2 ) ) d u = 1 2 λ sin ( λ ( ( u u 1 ) 2 + 2 ) ) d u \frac{1}{\sqrt{\lambda}}\int\limits_{0}^{\infty}\sin(\lambda(u^2+u^{-2}))du=\frac{1}{\sqrt{\lambda}}\int\limits_{0}^{\infty}\sin(\lambda((u-u^{-1})^2+2))du=\frac{1}{2\sqrt{\lambda}}\int\limits_{-\infty}^{\infty}\sin(\lambda((u-u^{-1})^2+2))du

By Glasser's Master Theorem, this integral can be reduced to

1 2 λ sin ( λ ( u 2 + 2 ) ) d u = 1 2 λ sin ( λ u 2 + 2 λ ) ) d u = 1 λ 0 sin ( λ u 2 ) cos ( 2 λ ) + cos ( λ u 2 ) sin ( 2 λ ) d u \frac{1}{2\sqrt{\lambda}}\int\limits_{-\infty}^{\infty}\sin(\lambda(u^2+2))du=\frac{1}{2\sqrt{\lambda}}\int\limits_{-\infty}^{\infty}\sin({\lambda}u^2+2\lambda))du=\frac{1}{\sqrt{\lambda}}\int\limits_{0}^{\infty}\sin({\lambda}u^2)\cos(2\lambda)+\cos({\lambda}u^2)\sin(2\lambda)du

We then make a final substitution t = λ u t=\sqrt{\lambda}u to get

1 λ 0 sin ( t 2 ) cos ( 2 λ ) + cos ( t 2 ) sin ( 2 λ ) d u \frac{1}{\lambda}\int\limits_{0}^{\infty}\sin(t^2)\cos(2\lambda)+\cos(t^2)\sin(2\lambda)du

Using the Fresnel integral, which states that 0 sin ( x 2 ) d x = 0 cos ( x 2 ) d x = π 8 \int\limits_{0}^{\infty}\sin(x^2)dx=\int\limits_{0}^{\infty}\cos(x^2)dx=\sqrt{\frac{\pi}{8}} , we can simplify this integral to

π 2 λ 2 ( sin ( 2 λ ) + cos ( 2 λ ) ) = π 2 λ sin ( 2 λ + π 4 ) \frac{\sqrt{\pi}}{2\lambda\sqrt{2}}(\sin(2\lambda)+\cos(2\lambda))=\boxed{\frac{\sqrt{\pi}}{2\lambda}\sin(2\lambda+\frac{\pi}{4})}

... assuming that λ > 0 \lambda > 0 ...otherwise D = 4 D=-4 .

Mark Hennings - 1 year, 9 months ago

Log in to reply

That is true, thanks for pointing this out. I've edited the question accordingly.

Wesley Low - 1 year, 9 months ago

Substitute x \displaystyle x by 1 λ x \displaystyle \dfrac{1}{\lambda x} and let I = 0 sin ( λ 2 x 2 + 1 x 2 ) d x \displaystyle I=\int_{0}^{\infty} \sin(\lambda^{2}x^{2}+\dfrac{1}{x^{2}}) dx we get,

λ I = 0 sin ( λ 2 x 2 + 1 x 2 ) d 1 x \displaystyle \lambda I=\int_{0}^{\infty} \sin(\lambda^{2}x^{2}+\dfrac{1}{x^{2}}) d\dfrac{-1}{x}

So, by adding the 2 integrals above(after multiplying the first one by λ \lambda ), we arrive at,

2 λ I = 0 sin ( λ 2 x 2 + 1 x 2 ) d ( λ x 1 x ) = 0 sin ( ( λ x 1 x ) 2 + 2 λ ) d ( λ x 1 x ) \displaystyle 2\lambda I=\int_{0}^{\infty} \sin(\lambda^{2}x^{2}+\dfrac{1}{x^{2}}) d(\lambda x-\dfrac{1}{x})=\int_{0}^{\infty} \sin((\lambda x-\dfrac{1}{x})^{2}+2\lambda) d(\lambda x-\dfrac{1}{x})

Let x = λ x 1 x \displaystyle x=\lambda x-\dfrac{1}{x} , we have

2 λ I = sin ( x 2 + 2 λ ) d x = sin ( x 2 ) cos ( 2 λ ) + cos ( x 2 ) sin ( 2 λ ) d x \displaystyle 2 \lambda I=\int_{-\infty}^{\infty} \sin(x^{2}+2\lambda ) dx=\int_{-\infty}^{\infty} \sin(x^{2})\cos(2\lambda )+\cos(x^{2})\sin(2\lambda ) dx

Now,

sin ( x 2 ) d x = cos ( x 2 ) d x = π 2 \displaystyle \int_{-\infty}^{\infty} \sin(x^{2}) dx=\int_{-\infty}^{\infty} \cos(x^{2}) dx=\sqrt{\dfrac{\pi}{2}}

2 λ I = π sin ( 2 λ + π 4 ) \displaystyle 2 \lambda I=\sqrt{\pi}\sin(2\lambda+\dfrac{\pi}{4})

I = π 2 λ sin ( 2 λ + π 4 ) \displaystyle I=\dfrac{\sqrt{\pi}}{2\lambda}\sin(2\lambda+\dfrac{\pi}{4})

So, A = 1 2 , B = C = 2 , D = 4 \displaystyle A=\boxed{\dfrac{1}{2}}, B=C=\boxed{2}, D=\boxed{4}

A + B + C + D = 0.5 + 2 + 2 + 4 = 8.5 \displaystyle A+B+C+D=0.5+2+2+4=\boxed{8.5}

Brilliant..how to approach this types of questions..which books are laid this all concept

BIPIN MAURYA - 1 year, 5 months ago

Log in to reply

I don't know if there's a book on this, but I cam up with this myself after staring and some thoughts.

คลุง แจ็ค - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...