s i n θ c o s θ sin\theta cos\theta

Geometry Level 2

s i n θ + s i n 2 θ + s i n 3 θ = 1 + c o s θ + c o s 2 θ \large sin\theta+sin2\theta+sin3\theta=1+cos\theta+cos2\theta

Find the value of θ \theta in the range 0 < θ < π 2 0<\theta<\frac{\pi}{2}

π 3 \frac{\pi}{3} π 4 \frac{\pi}{4} π 2 \frac{\pi}{2} π 6 \frac{\pi}{6} There is no solution between this limit.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Mehedi Hasan
Nov 12, 2017

s i n θ + s i n 2 θ + s i n 3 θ = 1 + c o s θ + c o s 2 θ 2 s i n 2 θ c o s θ + s i n 2 θ = c o s θ + 2 c o s 2 θ s i n 2 θ ( 2 c o s θ + 1 ) c o s θ ( 2 c o s θ + 1 ) = 0 ( 2 c o s θ + 1 ) ( 2 s i n θ c o s θ c o s θ ) = 0 c o s θ ( 2 c o s θ + 1 ) ( 2 s i n θ 1 ) = 0 sin\theta+sin2\theta+sin3\theta=1+cos\theta+cos2\theta\\ \Rightarrow 2sin2\theta cos\theta +sin2\theta=cos\theta+2cos^2\theta\\ \Rightarrow sin2\theta(2cos\theta+1)-cos\theta(2cos\theta+1)=0\\ \Rightarrow (2cos\theta+1)(2sin\theta cos\theta-cos\theta)=0\\ \Rightarrow cos\theta(2cos\theta+1)(2sin\theta-1)=0

For this interval, we have to take only

2 s i n θ 1 = 0 θ = π 6 2sin\theta-1=0\\\therefore\theta=\boxed{\frac{\pi}{6}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...