Cos ( x i )

Calculus Level 3

If I = 0 π 2 cos ( x i ) d x \displaystyle I=\int_0^{\frac{\pi}{2}}\cos\left(xi\right)\ dx , enter I | I | .

Notation: i = 1 i=\sqrt{-1} denotes the imaginary unit .


The answer is 2.30129890231.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kellen Atkins
Sep 4, 2018

e x i = cos ( x ) + sin ( x ) i e x i = cos ( x ) sin ( x ) i e x i + e x i = 2 cos ( x ) e x i + e x i 2 = cos ( x ) 0 π 2 cos ( x i ) d x = 0 π 2 e x + e x 2 d x = 0 π 2 cosh ( x ) d x = sinh ( π 2 ) sinh ( 0 ) = 2.3012... e^{xi}=\cos\left(x\right)+\sin\left(x\right)i\\e^{-xi}=\cos\left(x\right)-\sin\left(x\right)i\\e^{xi}+e^{-xi}=2\cos\left(x\right)\\\frac{e^{xi}+e^{-xi}}{2}=\cos\left(x\right)\\ \int_0^{\frac{\pi}{2}}\cos\left(xi\right)\ dx=\int_0^{\frac{\pi}{2}}\frac{e^{-x}+e^x}{2}dx=\int_0^{\frac{\pi}{2}}\cosh\left(x\right)dx=\sinh\left(\frac{\pi}{2}\right)-\sinh\left(0\right)=\boxed{2.3012...}

How did you changed the last part from e^x to hyperbolic cosine? Why not directly solve that integral of e^x?

Department 8 - 2 years, 9 months ago

Log in to reply

It's the same thing it doesn't really matter.

kellen atkins - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...