sin a sin b \sin a \sin b

Geometry Level 2

Given that sin ( a + b ) = 0.75 \sin (a+b) =0.75 and sin ( a b ) = 0.5 \sin (a-b)=0.5 , find tan a tan b \dfrac {\tan a}{\tan b} .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

sin ( a + b ) + sin ( a b ) = 2 sin a cos b = 0.75 + 0.5 = 1.25 \sin (a+b)+\sin (a-b) =2\sin a\cos b=0.75+0.5=1.25 .

sin ( a + b ) sin ( a b ) = 2 cos a sin b = 0.75 0.5 = 0.25 \sin (a+b)-\sin (a-b) =2\cos a\sin b=0.75-0.5=0.25

So tan a tan b = 1.25 0.25 = 5 \dfrac{\tan a}{\tan b}=\dfrac{1.25}{0.25}=\boxed 5 .

Chew-Seong Cheong
May 10, 2020

{ sin ( a + b ) = sin a cos b + cos a sin b = 0.75 = 3 4 . . . ( 1 ) sin ( a b ) = sin a cos b cos a sin b = 0.5 = 1 2 . . . ( 2 ) \begin{cases} \sin (a+b) = \sin a \cos b + \cos a \sin b = 0.75 = \frac 34 & ...(1) \\ \sin (a-b) = \sin a \cos b - \cos a \sin b = 0.5 = \frac 12 & ...(2) \end{cases}

{ ( 1 ) + ( 2 ) : 2 sin a cos b = 5 4 sin a cos b = 5 8 . . . ( 3 ) ( 1 ) ( 2 ) : 2 cos a sin b = 1 4 cos a sin b = 1 8 . . . ( 4 ) \begin{cases} (1)+(2): & 2\sin a \cos b = \dfrac 54 & \implies \sin a \cos b = \dfrac 58 & ...(3) \\ (1)-(2): & 2\cos a \sin b = \dfrac 14 & \implies \cos a \sin b = \dfrac 18 & ...(4) \end{cases}

( 3 ) ( 4 ) : sin a cos b cos a sin b = tan a tan b = 5 \begin{aligned} \implies \frac {(3)}{(4)}: \quad \frac {\sin a \cos b}{\cos a \sin b} & = \frac {\tan a}{\tan b} = \boxed 5 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...