Sine all the Way

Calculus Level 4

I n = 0 π / 2 sin ( ( 2 n + 1 ) x ) sin ( x ) d x \large I_n = \int_0^{\pi/2}{\dfrac{\sin((2n + 1)x)}{\sin(x)} dx}

For I n I_n as defined above, find the value of lim n 2 I n \displaystyle \lim_{n \to \infty}{2I_n} .


The answer is 3.14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohan Shinde
May 4, 2018

Using the substitution u = 2 x u=2x and d u = 2 d x du=2dx

The integral changes to 1 2 0 π sin ( ( n + 1 2 ) u ) sin u 2 d u \frac 12\int_0^{\pi} \frac {\sin\left(\left(n+\frac 12\right)u\right)}{\sin \frac {u}{2}}du

And inside the integral is just the Dirichlet kernel i.e. D n D_n

Hence I n = 1 2 ( 0 π 1 + 2 k = 1 n cos ( k u ) d u ) I_n=\frac 12 \left(\int_0^{\pi} 1+2\sum_{k=1}^n \cos (ku) du\right)

Which simplifies to I n = π 2 + k = 1 n 0 π cos ( k u ) d u I_n=\frac {\pi}{2} +\sum_{k=1}^n \int_0^{\pi} \cos (ku) du

The integral along with summation simply becomes 0 0 .

Hence lim n 2 I n = lim n 2 π 2 = π \lim_{n\to \infty} 2I_n=\lim_{n\to \infty} 2\cdot \frac {\pi}{2}=\pi

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...