Sine and Cosine

Geometry Level 4

f ( x ) = sin 2 ( cos x ) + cos 2 ( sin x ) \large f(x) = \sin^2(\cos x) + \cos^2(\sin x)

For real x x , find the difference between the maximum value and minimum value of the function f ( x ) f(x) as described above.

Clarification : Angles are measured in radian.

1 cos ( 1 ) 1 - \cos (1) 0 1 sin ( 2 ) 1 - \sin (2) None of these choices 1 sin ( 1 ) 1 - \sin (1) 1 cos ( 2 ) 1 - \cos(2)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jagdish Singh
Nov 2, 2015

Without Using Calculus

Let f ( x ) = sin 2 ( cos x ) + cos 2 ( sin x ) = 1 cos 2 ( cos x ) + 1 sin 2 ( sin x ) f(x) = \sin^2(\cos x)+\cos^2(\sin x) = 1-\cos^2(\cos x)+1-\sin^2(\sin x)\;

So we get f ( x ) = 2 [ cos 2 ( cos x ) + sin 2 ( sin x ) ] f(x) = 2-\left[\cos^2(\cos x)+\sin^2(\sin x)\right]

Now 1 cos x 1 cos 2 ( 1 ) cos 2 ( cos x ) 1 -1\leq \cos x\leq 1\Rightarrow \cos^2(1)\leq \cos^2(\cos x)\leq 1

And equality on left and right hold for x = k π \displaystyle x = k\pi and x = ( 2 n + 1 ) π 2 \displaystyle x= \frac{(2n+1)\pi}{2}

Now 1 sin x 1 0 sin 2 ( sin x ) sin 2 ( 1 ) -1\leq \sin x \leq 1\Rightarrow 0\leq \sin^2(\sin x)\leq \sin^2(1)

And equality on left and right hold for x = k π \displaystyle x = k\pi and x = ( 2 n + 1 ) π 2 \displaystyle x= \frac{(2n+1)\pi}{2}

Hence cos 2 ( 1 ) cos 2 ( cos x ) + sin 2 ( sin x ) sin 2 ( 1 ) + 1 \cos^2(1)\leq \cos^2(\cos x)+\sin^2(\sin x)\leq \sin^2(1)+1

And equality on left and right hold for x = k π \displaystyle x = k\pi and x = ( 2 n + 1 ) π 2 \displaystyle x= \frac{(2n+1)\pi}{2}

So we get max [ f ( x ) ] = 2 cos 2 ( 1 ) = 1 + sin 2 ( 1 ) x k π , k Z \max[f(x)] = 2-\cos^2(1) = 1+\sin^2(1)\;\; \forall x\in k\pi\;,k\in \mathbb{Z}

So we get min [ f ( x ) ] = 2 sin 2 ( 1 ) 1 = cos 2 ( 1 ) x ( 2 n + 1 ) π 2 , n Z \displaystyle \min[f(x)] = 2-\sin^2(1)-1 = \cos^2(1)\;\; \forall x\in \frac{(2n+1)\pi}{2}\;,n\in \mathbb{Z}

So max [ f ( x ) ] min [ f ( x ) ] = 1 + sin 2 ( 1 ) cos 2 ( 1 ) = 1 cos ( 2 ) \max[f(x)]-\min[f(x)] =1+\sin^2(1)-\cos^2(1) = 1-\cos(2)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...