Sine and Cosine in integral

Calculus Level 3

Evaluate

0 π 2 cos 4 x + sin x cos 3 x + sin 2 x cos 2 x + sin 3 x cos x sin 4 x + cos 4 x + 2 sin x cos 3 x + 2 sin 2 x cos 2 x + 2 sin 3 x cos x d x \int^\frac \pi 2_0 \frac{\cos^4x + \sin x \cos^3 x + \sin^2x\cos^2x + \sin^3x\cos x}{\sin^4x + \cos^4x + 2\sin x\cos^3x + 2\sin^2x\cos^2x + 2\sin^3x\cos x} dx

π 16 \frac{\pi}{16} π 4 \frac{\pi}4 π 8 \frac{\pi}8 π 2 \frac{\pi}2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 29, 2020

I = 0 π 2 cos 4 x + sin x cos 3 x + sin 2 x cos 2 x + sin 3 x cos x cos 4 x + sin 4 x + 2 sin x cos 3 x + 2 sin 2 x cos 2 x + 2 sin 3 x cos x d x By a b f ( x ) d x = a b f ( a + b x ) d x \begin{aligned} I & = \int_0^\frac \pi 2 \frac {\cos^4 x + \sin x \cos^3 x + \sin^2 x \cos^2 x + \sin^3 x \cos x}{\cos^4 x + \sin^4 x + 2 \sin x \cos^3 x + 2 \sin^2 x \cos^2 x + 2 \sin^3 x \cos x} dx & \small \blue{\text{By }\int_a^b f(x) dx = \int_a^b f(a+b-x) dx} \end{aligned}

= 1 2 0 π 2 cos 4 x + sin x cos 3 x + sin 2 x cos 2 x + sin 3 x cos x cos 4 x + sin 4 x + 2 sin x cos 3 x + 2 sin 2 x cos 2 x + 2 sin 3 x cos x + sin 4 x + cos x sin 3 x + cos 2 x sin 2 x + cos 3 x sin x cos 4 x + sin 4 x + 2 sin x cos 3 x + 2 sin 2 x cos 2 x + 2 sin 3 x cos x d x = 1 2 0 π 2 cos 4 x + sin 4 x + 2 sin x cos 3 x + 2 sin 2 x cos 2 x + 2 sin 3 x cos x cos 4 x + sin 4 x + 2 sin x cos 3 x + 2 sin 2 x cos 2 x + 2 sin 3 x cos x d x = 0 π 2 d x = π 4 \small \begin{aligned} \ \ \ & = \frac 12 \int_0^\frac \pi 2 \frac {\cos^4 x + \sin x \cos^3 x + \sin^2 x \cos^2 x + \sin^3 x \cos x}{\cos^4 x + \sin^4 x + 2 \sin x \cos^3 x + 2 \sin^2 x \cos^2 x + 2 \sin^3 x \cos x} + \frac {\sin^4 x + \cos x \sin^3 x + \cos^2 x \sin^2 x + \cos^3 x \sin x}{\cos^4 x + \sin^4 x + 2 \sin x \cos^3 x + 2 \sin^2 x \cos^2 x + 2 \sin^3 x \cos x} dx \\ & = \frac 12 \int_0^\frac \pi 2 \frac {\cos^4 x + \sin^4 x + 2 \sin x \cos^3 x + 2 \sin^2 x \cos^2 x + 2 \sin^3 x \cos x} {\cos^4 x + \sin^4 x + 2 \sin x \cos^3 x + 2 \sin^2 x \cos^2 x + 2 \sin^3 x \cos x} dx \\ & = \int_0^\frac \pi 2 dx = \boxed{\frac \pi 4} \end{aligned}

Dwaipayan Shikari
Nov 29, 2020

Above integral can be written as Apple 🍎🍏 \textrm{Apple 🍎🍏}

I = 0 π 2 c o s 2 x ( c o s 2 x + s i n 2 x ) + s i n x c o s x ( s i n 2 x + c o s 2 x ) ( s i n 2 x + c o s 2 x ) 2 + 2 s i n x c o s x ( s i n 2 x + c o s 2 x ) d x I=\int_0^{\frac{π}{2}} \frac{cos^2 x (cos^2 x +sin^2 x)+sinx cosx (sin^2 x +cos^2 x)}{(sin^2 x+cos^2 x)^2 +2sinxcosx(sin^2 x+cos^2 x)}dx

I = 0 π 2 c o s 2 x + s i n x c o s x 1 + 2 s i n x c o s x d x I= \int_0^{\frac{π}{2}} \frac{cos^2 x +sinx cosx }{1+2 sinx cosx }dx

Using 0 π / 2 f ( x ) d x = 0 π / 2 f ( π / 2 x ) d x \int_0^{π/2} f(x)dx = \int_0^{π/2} f(π/2-x)dx

This integral is same as 0 π / 2 s i n 2 x + s i n x c o s x 1 + 2 s i n x c o s x d x \int_0^{π/2} \frac{sin^2 x +sinx cosx}{1+2sinx cosx}dx

2 I = 0 π / 2 1 + 2 s i n x c o s x 1 + 2 s i n x c o s x d x \implies{2I= \int_0^{π/2} \frac{1+2sinx cosx}{1+2sinx cosx}dx}

Answer is I = π 4 \boxed{I= \frac{π}{4}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...