⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ cos x − 1 sin x ≥ 1 sin x 3 cos x − 1 ≥ 1 .
Find x ∈ ( 0 ∘ , 3 6 0 ∘ ) in degrees satisfying the system of inequalities above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Half Angle Tangent Substitution
cos x − 1 sin x 1 + t 2 1 − t 2 − 1 1 + t 2 2 t − t 1 ⟹ − 1 ≥ 1 ≥ 1 ≥ 1 ≤ t < 0 Let t = tan 2 x . . . ( 1 )
Similarly,
sin x 3 cos x − 1 2 t 3 − 3 t 2 − 1 − t 2 2 t 2 − 4 t 2 2 t 2 + t − 1 ( t + 1 ) ( 2 t − 1 ) ⟹ t ≤ − 1 ∪ t ≥ 1 ≥ 1 ≥ 1 ≥ 0 ≥ 0 ≥ 2 1 . . . ( 2 )
Comparing ( 1 ) and ( 2 ) , we note that there is only one solution t = tan 2 x = − 1 ⟹ x = 2 7 0 ∘ ,