Sine and Cosine mixture

Geometry Level 3

Find the minimum value of the given expression

( 2 cos α + 5 sin β 8 ) 2 + ( 2 sin α + 5 cos β 15 ) 2 (2\cos\alpha+5\sin\beta-8)^2+(2\sin\alpha+5\cos\beta-15)^2


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hosam Hajjir
Dec 10, 2020

Consider the three vectors v 1 = ( 2 cos α , 2 sin α ) , v 2 = ( 5 sin β , 5 cos β ) , v 3 = ( 8 , 15 ) \mathbf{v}_1 = ( 2 \cos \alpha, 2 \sin \alpha ) , \mathbf{v}_2 = ( 5 \sin \beta , 5 \cos \beta ), \mathbf{v}_3 = (-8, -15) , then

the indicated sum is the square of the magnitude of v 1 + v 2 + v 3 \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 , we can choose α \alpha and β \beta so that v 1 \mathbf{v}_1 and v 2 \mathbf{v}_2 point in the opposite direction as v 3 \mathbf{v}_3 , hence the length of the resultant vector is ( 8 ) 2 + ( 15 ) 2 2 5 = 17 7 = 10 \sqrt{(-8)^2 + (-15)^2 } - 2 - 5 = 17 - 7 = 10 , so that the square of the magnitude is 1 0 2 = 100 10^2 = \boxed{100} .

Chew-Seong Cheong
Dec 10, 2020

Consider three vectors v a = ( 2 cos α , 2 sin α ) \mathbf {v_a} = (2\cos \alpha, 2\sin \alpha) , v b = ( 5 sin β , 5 cos β ) \mathbf {v_b} = (5\sin \beta, 5 \cos \beta) , and v c = ( 8 , 15 ) \mathbf {v_c} = (8,15) . Let v d = v a + v b \mathbf {v_d = v_a+v_b} . Then ( 2 cos α + 5 sin β 8 ) 2 + ( 2 sin α + 5 cos β 15 ) 2 = v d v c 2 (2\cos \alpha + 5\sin \beta - 8)^2 + (2\sin \alpha + 5\cos \beta -15)^2 = |\mathbf{v_d-v_c}|^2 . And v d v c |\mathbf{v_d-v_c}| (denoted by the dotted line) is minimum when α = tan 1 8 15 \alpha = \tan^{-1} \frac 8{15} and β = tan 1 15 8 \beta = \tan^{-1} \frac {15}8 . Then we have

v d v c = v c v d = v c v d = 8 2 + 1 5 2 v a v b = 17 2 5 = 10 \mathbf{|v_d-v_c| = |v_c-v_d| = |v_c|-|v_d|} = \sqrt{8^2+15^2} - \mathbf{|v_a|-|v_b|} = 17 - 2 - 5 = 10

Therefore v c v d 2 = 1 0 2 = 100 \mathbf{|v_c-v_d|^2 = 10^2 = \boxed{100}} .

K T
Dec 13, 2020

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...